Mechanical characterization of carbon nanomembranes from self-assembled monolayers
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 163 | |
Autor | ||
Lizenz | CC-Namensnennung - keine Bearbeitung 4.0 International: Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/50438 (DOI) | |
Herausgeber | 05jdrrw50 (ROR) | |
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
| |
Schlagwörter |
Beilstein TV23 / 163
16
20
31
43
44
47
51
57
67
78
102
105
112
131
135
138
139
140
144
145
146
149
150
151
154
157
159
160
161
162
163
00:00
Kohlenstoff-14KunststoffFunktionelle GruppeFlüssigkeitsfilmLegierenStanniolBesprechung/Interview
00:47
Chemische EigenschaftStromRadioaktiver StoffMonolayer <Biologie>Elektron <Legierung>CurryChemischer ProzessFlüssigkeitsfilmPasteBesprechung/Interview
01:28
Systemische Therapie <Pharmakologie>Setzen <Verfahrenstechnik>ReaktionsmechanismusNeotenieKohlenstofffaserKonkrement <Innere Medizin>Chemische EigenschaftDruckabhängigkeitÖlBiegsamkeitOktanzahlThermoformenTiermodellLegierenStanniolElastizitätsmodulBesprechung/Interview
02:15
Chemisches Experiment
02:22
Monolayer <Biologie>Systemische Therapie <Pharmakologie>VakuumbeschichtenAlkoholische LösungTiermodellBesprechung/Interview
02:42
VernetzungsmittelMonolayer <Biologie>AusflockungMutationszüchtungElektron <Legierung>Biologisches Material
02:48
Biologisches MaterialMonolayer <Biologie>Elektron <Legierung>Besprechung/Interview
03:04
WasserGoldBiologisches Material
03:12
KohlenstofffaserOberflächenchemieDesublimationÄtzenWasserStanniolOxideFarbenindustrieGoldSubstrat <Chemie>SiliciumMonolayer <Biologie>Biologisches MaterialÖlAktives ZentrumWildbachWasserwelle <Haarbehandlung>Chemisches Experiment
03:54
Monolayer <Biologie>WildbachSubstrat <Chemie>Besprechung/Interview
04:04
Chemische EigenschaftBesprechung/Interview
04:13
KohlenstofffaserChemische EigenschaftDruckabhängigkeitBiologisches MaterialBesprechung/Interview
04:24
BiochemikerinKohlenstofffaserChemische Eigenschaft
04:32
DruckabhängigkeitEukaryontische ZelleBesprechung/Interview
04:38
GasflascheDruckabhängigkeitEukaryontische ZelleMetall
04:45
MetallGasflascheBesprechung/Interview
05:02
WerkzeugstahlOrganische ChemieDruckabhängigkeitChemisches Experiment
05:11
Plasmadesorptions-MassenspektrometrieBiologisches MaterialPlasmamembranChemisches Experiment
05:27
Gangart <Erzlagerstätte>Biologisches MaterialMeeresspiegelMutationszüchtungPlasmamembranComputeranimation
05:40
Besprechung/Interview
05:46
Initiator <Chemie>PlasmamembranComputeranimationChemisches Experiment
05:52
Computeranimation
05:58
DruckabhängigkeitPlasmamembranChemisches Experiment
06:04
DruckabhängigkeitFunktionelle GruppeSchubspannungVolumenhafter FehlerBesprechung/InterviewChemisches Experiment
06:15
ElastizitätsmodulKohlenstofffaserNeotenieBesprechung/Interview
06:24
Diagramm
06:31
Kohlenstoff-14OberflächenchemieMonolayer <Biologie>
Transkript: Englisch(automatisch erzeugt)
00:10
My name is Armin Gelsäuser from Fakulteit für Physik of the University of Bielefeld. And this experiment in this video is about plastic foils.
00:22
You all know typical household plastic foils. This is an everyday product. Probably you know that the typical thickness of such a foil is 5 micrometers. In our group we now have developed methods to make very similar foils that are only 1 nanometer thin.
00:45
So 5,000 times thinner. We use a process by which we start with a self-assembled monolayer which we then expose to irradiation of electrons. The electrons cross-link them into a two-dimensional polymeric layer forming a stable, thin, only 1 nanometer thin film.
01:08
Now in the past we have of course studied many of properties and applications of this film. Fundamental properties like electrical characterization or optical characterization have been made.
01:22
Now the purpose of this experiment is to study mechanical properties. And typical way to do it, how do you study mechanical properties of a polymeric material is you apply a pressure.
01:41
And if we apply some pressure the material elastically deforms. And now you measure the type of deformation, the rate at which it deforms. And from this you can calculate Young's modulus and other properties. Now in our laboratory my co-workers Andre Bayer and Zhang Hui Zhang are now demonstrating
02:05
firstly how they make the foil and second how the mechanics of the foil is studied. Here we have the carbon foil which is 1 nanometer thick. And now I would like to explain how we fabricate this.
02:24
So we can use this UHV system to fabricate with self-assembled monolayer by vapor deposition. We can also use a solution-based method to produce self-assembled monolayers. And finally we can analyze this with the XPS part of the system.
02:47
After we have the self-assembled monolayer we need to stabilize the layer by cross-linking. And we can do that with irradiating the sample with electrons with a flat gun.
03:01
And finally we can transfer the monolayer on top of another sample. And to do this we spin coat the sample with a layer of PMMA. And we etch the gold underneath away with a gold etchant and let these PMMA layer float onto a water surface.
03:28
And finally we take the substrate where we want to have the monolayer and let the monolayer float onto the substrate. In this way we can for example deposit these carbon foil onto such sample.
03:44
This is a silicon substrate with a layer of silicon oxide. And this substrate shows a certain color which is generated due to interference. And by putting this monolayer on top of it we change the interference. And in this way we can see the monolayer with the naked eye.
04:02
We can also use substrates with holes in it. And in this way we have access to analyze the mechanical properties and we will see this now. My name is Xianghui Zhang and I would like to give you a short introduction of my experiment.
04:23
So here is one sample. So the mechanical properties of the carbon nanomembranes is measured by a bio test in an AFM. So first of all I would like to introduce the pressure cell. The pressure cell is built in a way that we have a metal cylinder and then
04:45
we place a layer of PDMS on top of this cylinder with openings in the middle. And the metal cylinder also consists of two openings and one is for the gas, to introduce the gas pressure.
05:05
And the other opening is to send it to the pressure sensor which can be used to measure the pressure. And then we mount the sample on the PDMS with the membrane directly above this opening.
05:29
And the next step is we bring this sample to the AFM and so we put the sample on the AFM sample stage. And then with the assistance of the optical microscope we align the AFM county level above the membrane.
05:51
So then we can approach the AFM tip to the membrane and record the initial height of this membrane.
06:01
And then we could apply some pressure to measure the change in the deflection of this membrane. So from the deflection of the membrane, of the function of the pressure, we could determine the Young's modulus and the residual stress of the carbon nanomembrane.
06:30
If you are interested in our work and want to find more information, I would like to recommend you to read our article.
Empfehlungen
Serie mit 24 Medien