We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mechanical characterization of carbon nanomembranes from self-assembled monolayers

00:00

Formale Metadaten

Titel
Mechanical characterization of carbon nanomembranes from self-assembled monolayers
Serientitel
Anzahl der Teile
163
Autor
Lizenz
CC-Namensnennung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The mechanical characterization of carbon nanomembranes in an atomic force microscope (AFM) is presented in this video. The nanomembranes with a thickness of 1 nm are fabricated by electron-induced cross-linking of aromatic self-assembled monolayers. A novel type of in-situ bulge test in the AFM is utilized to investigate their mechanical properties.
Schlagwörter
Kohlenstoff-14KunststoffFunktionelle GruppeFlüssigkeitsfilmLegierenStanniolBesprechung/Interview
Chemische EigenschaftStromRadioaktiver StoffMonolayer <Biologie>Elektron <Legierung>CurryChemischer ProzessFlüssigkeitsfilmPasteBesprechung/Interview
Systemische Therapie <Pharmakologie>Setzen <Verfahrenstechnik>ReaktionsmechanismusNeotenieKohlenstofffaserKonkrement <Innere Medizin>Chemische EigenschaftDruckabhängigkeitÖlBiegsamkeitOktanzahlThermoformenTiermodellLegierenStanniolElastizitätsmodulBesprechung/Interview
Chemisches Experiment
Monolayer <Biologie>Systemische Therapie <Pharmakologie>VakuumbeschichtenAlkoholische LösungTiermodellBesprechung/Interview
VernetzungsmittelMonolayer <Biologie>AusflockungMutationszüchtungElektron <Legierung>Biologisches Material
Biologisches MaterialMonolayer <Biologie>Elektron <Legierung>Besprechung/Interview
WasserGoldBiologisches Material
KohlenstofffaserOberflächenchemieDesublimationÄtzenWasserStanniolOxideFarbenindustrieGoldSubstrat <Chemie>SiliciumMonolayer <Biologie>Biologisches MaterialÖlAktives ZentrumWildbachWasserwelle <Haarbehandlung>Chemisches Experiment
Monolayer <Biologie>WildbachSubstrat <Chemie>Besprechung/Interview
Chemische EigenschaftBesprechung/Interview
KohlenstofffaserChemische EigenschaftDruckabhängigkeitBiologisches MaterialBesprechung/Interview
BiochemikerinKohlenstofffaserChemische Eigenschaft
DruckabhängigkeitEukaryontische ZelleBesprechung/Interview
GasflascheDruckabhängigkeitEukaryontische ZelleMetall
MetallGasflascheBesprechung/Interview
WerkzeugstahlOrganische ChemieDruckabhängigkeitChemisches Experiment
Plasmadesorptions-MassenspektrometrieBiologisches MaterialPlasmamembranChemisches Experiment
Gangart <Erzlagerstätte>Biologisches MaterialMeeresspiegelMutationszüchtungPlasmamembranComputeranimation
Besprechung/Interview
Initiator <Chemie>PlasmamembranComputeranimationChemisches Experiment
Computeranimation
DruckabhängigkeitPlasmamembranChemisches Experiment
DruckabhängigkeitFunktionelle GruppeSchubspannungVolumenhafter FehlerBesprechung/InterviewChemisches Experiment
ElastizitätsmodulKohlenstofffaserNeotenieBesprechung/Interview
Diagramm
Kohlenstoff-14OberflächenchemieMonolayer <Biologie>
Transkript: Englisch(automatisch erzeugt)
My name is Armin Gelsäuser from Fakulteit für Physik of the University of Bielefeld. And this experiment in this video is about plastic foils.
You all know typical household plastic foils. This is an everyday product. Probably you know that the typical thickness of such a foil is 5 micrometers. In our group we now have developed methods to make very similar foils that are only 1 nanometer thin.
So 5,000 times thinner. We use a process by which we start with a self-assembled monolayer which we then expose to irradiation of electrons. The electrons cross-link them into a two-dimensional polymeric layer forming a stable, thin, only 1 nanometer thin film.
Now in the past we have of course studied many of properties and applications of this film. Fundamental properties like electrical characterization or optical characterization have been made.
Now the purpose of this experiment is to study mechanical properties. And typical way to do it, how do you study mechanical properties of a polymeric material is you apply a pressure.
And if we apply some pressure the material elastically deforms. And now you measure the type of deformation, the rate at which it deforms. And from this you can calculate Young's modulus and other properties. Now in our laboratory my co-workers Andre Bayer and Zhang Hui Zhang are now demonstrating
firstly how they make the foil and second how the mechanics of the foil is studied. Here we have the carbon foil which is 1 nanometer thick. And now I would like to explain how we fabricate this.
So we can use this UHV system to fabricate with self-assembled monolayer by vapor deposition. We can also use a solution-based method to produce self-assembled monolayers. And finally we can analyze this with the XPS part of the system.
After we have the self-assembled monolayer we need to stabilize the layer by cross-linking. And we can do that with irradiating the sample with electrons with a flat gun.
And finally we can transfer the monolayer on top of another sample. And to do this we spin coat the sample with a layer of PMMA. And we etch the gold underneath away with a gold etchant and let these PMMA layer float onto a water surface.
And finally we take the substrate where we want to have the monolayer and let the monolayer float onto the substrate. In this way we can for example deposit these carbon foil onto such sample.
This is a silicon substrate with a layer of silicon oxide. And this substrate shows a certain color which is generated due to interference. And by putting this monolayer on top of it we change the interference. And in this way we can see the monolayer with the naked eye.
We can also use substrates with holes in it. And in this way we have access to analyze the mechanical properties and we will see this now. My name is Xianghui Zhang and I would like to give you a short introduction of my experiment.
So here is one sample. So the mechanical properties of the carbon nanomembranes is measured by a bio test in an AFM. So first of all I would like to introduce the pressure cell. The pressure cell is built in a way that we have a metal cylinder and then
we place a layer of PDMS on top of this cylinder with openings in the middle. And the metal cylinder also consists of two openings and one is for the gas, to introduce the gas pressure.
And the other opening is to send it to the pressure sensor which can be used to measure the pressure. And then we mount the sample on the PDMS with the membrane directly above this opening.
And the next step is we bring this sample to the AFM and so we put the sample on the AFM sample stage. And then with the assistance of the optical microscope we align the AFM county level above the membrane.
So then we can approach the AFM tip to the membrane and record the initial height of this membrane.
And then we could apply some pressure to measure the change in the deflection of this membrane. So from the deflection of the membrane, of the function of the pressure, we could determine the Young's modulus and the residual stress of the carbon nanomembrane.
If you are interested in our work and want to find more information, I would like to recommend you to read our article.