Detecting magnetism on the atomic scale

Video thumbnail (Frame 0) Video thumbnail (Frame 283) Video thumbnail (Frame 478) Video thumbnail (Frame 842) Video thumbnail (Frame 1118) Video thumbnail (Frame 1355) Video thumbnail (Frame 1769) Video thumbnail (Frame 2768) Video thumbnail (Frame 3210) Video thumbnail (Frame 4634) Video thumbnail (Frame 4865) Video thumbnail (Frame 5062) Video thumbnail (Frame 5255) Video thumbnail (Frame 5459) Video thumbnail (Frame 5683) Video thumbnail (Frame 5916) Video thumbnail (Frame 7582) Video thumbnail (Frame 8469) Video thumbnail (Frame 8682) Video thumbnail (Frame 8920) Video thumbnail (Frame 9177) Video thumbnail (Frame 9561) Video thumbnail (Frame 9804) Video thumbnail (Frame 10063) Video thumbnail (Frame 10350) Video thumbnail (Frame 10580) Video thumbnail (Frame 10767) Video thumbnail (Frame 12485) Video thumbnail (Frame 12851) Video thumbnail (Frame 13554) Video thumbnail (Frame 13780)
Video in TIB AV-Portal: Detecting magnetism on the atomic scale

Formal Metadata

Title
Detecting magnetism on the atomic scale
Author
License
CC Attribution - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
2016
Language
English

Content Metadata

Subject Area
Abstract
This video illustrates an experimental study of the electrical transport behaviour of atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact and the formation of magnetic order in these chains, the existence of which is still under debate. Here we illustrate an experimental study of the electrical transport behaviour of atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse magneto-conductance behaviour that sensitively reacts to tiny changes of the atomic configuration. Technically this is done by stretching a free standing nanobridge of platinum with subatomic precision. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size.
Keywords magnetics
Chemical experiment
Chemical experiment
Chemical experiment
Chemical experiment
Chemical experiment Columbia Records
Chemical experiment
Molecular geometry
Feedback
hidden