Novel applications of superhydrophilic-superhydrophobic patterned surfaces
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 163 | |
Autor | ||
Lizenz | CC-Namensnennung - keine Bearbeitung 4.0 International: Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/50372 (DOI) | |
Herausgeber | 05jdrrw50 (ROR) | |
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
| |
Schlagwörter |
Beilstein TV94 / 163
16
20
31
43
44
47
51
57
67
78
102
105
112
131
135
138
139
140
144
145
146
149
150
151
154
157
159
160
161
162
163
00:00
EisflächeFunktionelle GruppeAlterungTopizitätOberflächenchemieNanopartikelWerkstoffkundeChemische ForschungKunststoffchemieOrganische ChemieBesprechung/Interview
00:19
Funktionelle GruppeTopizitätChemische EigenschaftWasserOberflächenchemieLeckageWasserbeständigkeitBesprechung/Interview
00:29
OberflächenchemieBenetzungChemisches Experiment
00:35
WasserOberflächenchemieBesprechung/Interview
00:40
Chemische EigenschaftOberflächenwasserOberflächenchemieSeafloor spreadingWasserBesprechung/Interview
00:51
Wasser
01:00
BenetzungMähdrescherOberflächenchemieChemische EigenschaftFunktionelle GruppeBesprechung/Interview
01:37
OberflächenchemieQuerprofilChemische ForschungChemische EigenschaftPolymereChemisches ExperimentBesprechung/Interview
01:48
WasserSeafloor spreadingQuerprofilBesprechung/Interview
02:11
WerkzeugstahlComputeranimation
02:25
Computeranimation
02:31
Computeranimation
02:36
Chemisches ExperimentComputeranimation
02:54
WasserOberflächenchemieGangart <Erzlagerstätte>MicroarrayThermoformenChemisches Experiment
03:09
TellerseparatorWasserOberflächenchemieHydroxyethylcellulosenThermoformenBesprechung/Interview
03:24
OberflächenchemieThermoformenWasserChemisches Experiment
03:33
Anomalie <Medizin>Eukaryontische ZelleOberflächenchemieWasserbeständigkeitZelleMicroarrayChemisches Experiment
03:38
Anomalie <Medizin>Eukaryontische ZelleOberflächenchemieChemisches Experiment
03:48
ZelleAktivierungsenergieChemische ForschungKartoffelchipsKorkenMeeresströmungEukaryontische ZelleWasserstoffBesprechung/Interview
03:58
KartoffelchipsChemisches Experiment
04:05
ZelleMicroarrayEukaryontische ZelleBesprechung/Interview
04:13
OberflächenchemieStauseeAlkoholische LösungWässrige LösungZunderbeständigkeitChemische StrukturSetzen <Verfahrenstechnik>ZelleEukaryontische ZelleSuspensionSubstrat <Boden>Computeranimation
04:25
ZelleEukaryontische ZelleMultiproteinkomplexKorngrenzeHochleistungswerkstoffGenomKartoffelchipsChemische ForschungMicroarrayGrün fluoreszierendes ProteinChemischer ReaktorOberflächenchemieClick-ChemieWasserbeständigkeit
Transkript: Englisch(automatisch erzeugt)
00:08
In my research group at the Karstner Institute of Technology in Germany we use organic chemistry and polymer chemistry to develop new biologically functional materials, surfaces and nanoparticles. One of the topics in the group is superhydrophobicity.
00:23
So what is a superhydrophobic surface? Such surfaces have unique water repellent properties and they are very difficult to wet. One very known example of superhydrophobic surfaces is a lotus leaf. On such leaves water rolls off the surface very easily.
00:40
Another extreme property of a surface is superhydrophilicity. On superhydrophilic surfaces water spreads very easily and forms a thin layer on the surface. A well known example is paper that can be easily wetted with water. What we do in my group, we try to develop new methods to create both superhydrophobic
01:03
and superhydrophilic surfaces and what is very important, we are trying to combine these two properties on the same surface in precise micro-patterns. Such combination of two extreme wettabilities on the same surface leads to new functions,
01:22
new properties with very interesting applications. And today we want to show you a few examples of possible applications of this precise superhydrophobic superhydrophilic micro-patterns on the same surfaces. We are in chemistry lab and here we are creating different polymeric surfaces with
01:46
different properties and here one of the examples of such surface, that surface combined of superhydrophilic areas surrounded by superhydrophobic borders and if I just fill
02:03
superhydrophilic areas with water, just like that, the water spreads until the superhydrophobic borders and by creating of different geometry of superhydrophobic borders we can create
02:24
different geometries of liquid patterns.
02:58
Using our superhydrophilic, superhydrophobic surfaces we can form arrays of thousands
03:03
of micro-droplets in one simple step and we use the method of discontinuous dewetting. As I move water across our patterned surface the water becomes pinned at the edges of the superhydrophilic spots and separates to form isolated micro-droplets in each hydrophilic
03:23
spot. Here I have a patterned array with one millimeter diameter circles and as I move the water across the surface you can see that a single water droplet forms in each hydrophilic spot. Our superhydrophilic, superhydrophobic surfaces can be used in a variety of applications.
03:44
Since cells prefer to adhere and grow in the superhydrophilic spots we can use it for cell patterning as well as cell micro-arrays. In addition, since the superhydrophobic barriers can confine liquid to each hydrophilic spot so we can pre-print different chemicals and bioactive substances and use it as a cell
04:04
screening chip. We can also encapsulate cells in the micro-droplets and arrays of hydrogels for cell screening in 3D micro-environments.