We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Novel applications of superhydrophilic-superhydrophobic patterned surfaces

00:00

Formale Metadaten

Titel
Novel applications of superhydrophilic-superhydrophobic patterned surfaces
Serientitel
Anzahl der Teile
163
Autor
Lizenz
CC-Namensnennung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We demonstrate that combining the unique properties of superhydrophilicity and superhydrophobicity on the same surface in micropatterns generates unexpected and interesting applications. We use the micropatterns for digital liquid patterning – a simple, maskless method to generate complex water droplets – to create patterns of particles, cells, hydrogels, and complex liquid gradients. We also use the micropatterns to create arrays of thousands of isolated droplets in one simple step. We can confine cells in each individual microdroplet or hydrogel to screening, for example, single cells, non-adherent cells, and cells in 3D microenvironments. We can print different chemicals or bioactive molecules in each superhydrophilic spot and use it as a miniaturized cell screening chip. Other details and examples of applications can be found on www.levkingroup.com
Schlagwörter
EisflächeFunktionelle GruppeAlterungTopizitätOberflächenchemieNanopartikelWerkstoffkundeChemische ForschungKunststoffchemieOrganische ChemieBesprechung/Interview
Funktionelle GruppeTopizitätChemische EigenschaftWasserOberflächenchemieLeckageWasserbeständigkeitBesprechung/Interview
OberflächenchemieBenetzungChemisches Experiment
WasserOberflächenchemieBesprechung/Interview
Chemische EigenschaftOberflächenwasserOberflächenchemieSeafloor spreadingWasserBesprechung/Interview
Wasser
BenetzungMähdrescherOberflächenchemieChemische EigenschaftFunktionelle GruppeBesprechung/Interview
OberflächenchemieQuerprofilChemische ForschungChemische EigenschaftPolymereChemisches ExperimentBesprechung/Interview
WasserSeafloor spreadingQuerprofilBesprechung/Interview
WerkzeugstahlComputeranimation
Computeranimation
Computeranimation
Chemisches ExperimentComputeranimation
WasserOberflächenchemieGangart <Erzlagerstätte>MicroarrayThermoformenChemisches Experiment
TellerseparatorWasserOberflächenchemieHydroxyethylcellulosenThermoformenBesprechung/Interview
OberflächenchemieThermoformenWasserChemisches Experiment
Anomalie <Medizin>Eukaryontische ZelleOberflächenchemieWasserbeständigkeitZelleMicroarrayChemisches Experiment
Anomalie <Medizin>Eukaryontische ZelleOberflächenchemieChemisches Experiment
ZelleAktivierungsenergieChemische ForschungKartoffelchipsKorkenMeeresströmungEukaryontische ZelleWasserstoffBesprechung/Interview
KartoffelchipsChemisches Experiment
ZelleMicroarrayEukaryontische ZelleBesprechung/Interview
OberflächenchemieStauseeAlkoholische LösungWässrige LösungZunderbeständigkeitChemische StrukturSetzen <Verfahrenstechnik>ZelleEukaryontische ZelleSuspensionSubstrat <Boden>Computeranimation
ZelleEukaryontische ZelleMultiproteinkomplexKorngrenzeHochleistungswerkstoffGenomKartoffelchipsChemische ForschungMicroarrayGrün fluoreszierendes ProteinChemischer ReaktorOberflächenchemieClick-ChemieWasserbeständigkeit
Transkript: Englisch(automatisch erzeugt)
In my research group at the Karstner Institute of Technology in Germany we use organic chemistry and polymer chemistry to develop new biologically functional materials, surfaces and nanoparticles. One of the topics in the group is superhydrophobicity.
So what is a superhydrophobic surface? Such surfaces have unique water repellent properties and they are very difficult to wet. One very known example of superhydrophobic surfaces is a lotus leaf. On such leaves water rolls off the surface very easily.
Another extreme property of a surface is superhydrophilicity. On superhydrophilic surfaces water spreads very easily and forms a thin layer on the surface. A well known example is paper that can be easily wetted with water. What we do in my group, we try to develop new methods to create both superhydrophobic
and superhydrophilic surfaces and what is very important, we are trying to combine these two properties on the same surface in precise micro-patterns. Such combination of two extreme wettabilities on the same surface leads to new functions,
new properties with very interesting applications. And today we want to show you a few examples of possible applications of this precise superhydrophobic superhydrophilic micro-patterns on the same surfaces. We are in chemistry lab and here we are creating different polymeric surfaces with
different properties and here one of the examples of such surface, that surface combined of superhydrophilic areas surrounded by superhydrophobic borders and if I just fill
superhydrophilic areas with water, just like that, the water spreads until the superhydrophobic borders and by creating of different geometry of superhydrophobic borders we can create
different geometries of liquid patterns.
Using our superhydrophilic, superhydrophobic surfaces we can form arrays of thousands
of micro-droplets in one simple step and we use the method of discontinuous dewetting. As I move water across our patterned surface the water becomes pinned at the edges of the superhydrophilic spots and separates to form isolated micro-droplets in each hydrophilic
spot. Here I have a patterned array with one millimeter diameter circles and as I move the water across the surface you can see that a single water droplet forms in each hydrophilic spot. Our superhydrophilic, superhydrophobic surfaces can be used in a variety of applications.
Since cells prefer to adhere and grow in the superhydrophilic spots we can use it for cell patterning as well as cell micro-arrays. In addition, since the superhydrophobic barriers can confine liquid to each hydrophilic spot so we can pre-print different chemicals and bioactive substances and use it as a cell
screening chip. We can also encapsulate cells in the micro-droplets and arrays of hydrogels for cell screening in 3D micro-environments.