Bestand wählen
Merken

Solid-state quantum memories for quantum repeaters

Zitierlink des Filmsegments
Embed Code

Für dieses Video liegen keine automatischen Analyseergebnisse vor.

Analyseergebnisse werden nur für Videos aus Technik, Architektur, Chemie, Informatik, Mathematik und Physik erstellt, bei denen dies rechtlich zulässig ist.

Metadaten

Formale Metadaten

Titel Solid-state quantum memories for quantum repeaters
Serientitel The Annual Conference on Quantum Cryptography (QCRYPT) 2012
Anzahl der Teile 30
Autor Timoney, Nuala
Mitwirkende Centre for Quantum Technologies (CQT)
National University of Singapore (NUS)
Lizenz CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.5 Schweiz:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/36680
Herausgeber Eidgenössische Technische Hochschule (ETH) Zürich
Erscheinungsjahr 2012
Sprache Englisch

Inhaltliche Metadaten

Fachgebiet Informatik
Abstract The maximal transmission distance of optical quantum communication is reaching a hard limit imposed by the intrinsic loss of the transmission medium, e.g. optical fibre. A quantum repeater promises to push that limit towards much longer, potentially intercontinental distances. Its implementation relies on the development of efficient and long-lived quantum memories that can store and retrieve the quantum properties of light. Sources of photonic entanglement, tailored for quantum memories, are also necessary and represent a challenging experimental task. I will review the efforts of our group towards the realization of quantum memories based on rare-earth-ion doped crystals (REIC) as well as a matching source of photon pair. This approach has recently allowed us to demonstrate several features that are of great importance for quantum repeaters, and for quantum networks in general. After a brief introduction, I will show how we have successfully entangled two neodymium-doped crystals in a heralded fashion. I will then show how polarization qubits encoded in true single photons can be stored in such crystals, despite their intrinsic birefringence and polarization-dependant absorption. I will finally present an on-demand quantum memory exploiting the long hyperfine coherence time of europium ions to store light for up to 8 ms. Our results highlight the great potential of REIC for quantum repeaters.

Ähnliche Filme

Loading...
Feedback