Add to Watchlist

Quantum to classical randomness extractors

0 views

Citation of segment
Embed Code
Purchasing a DVD Cite video

For this video, there are no automatic analysis results.

Analysis results are only provided—where legally permissible—for videos from the realms of technology/engineering, architecture, chemistry, information technology, mathematics, and physics.

Metadata

Formal Metadata

Title Quantum to classical randomness extractors
Title of Series The Annual Conference on Quantum Cryptography (QCRYPT) 2012
Number of Parts 30
Author Berta, Mario
Contributors Centre for Quantum Technologies (CQT)
National University of Singapore (NUS)
License CC Attribution - NonCommercial - NoDerivatives 2.5 Switzerland:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
DOI 10.5446/36674
Publisher Eidgenössische Technische Hochschule (ETH) Zürich
Release Date 2012
Language English

Content Metadata

Subject Area Information technology
Abstract The goal of randomness extraction is to distill (almost) perfect randomness from a weak source of randomness. When the source yields a classical string X, many extractor constructions are known. Yet, when considering a physical randomness source, X is itself ultimately the result of a measurement on an underlying quantum system. When characterizing the power of a source to supply randomness it is hence a natural question to ask, how much classical randomness we can extract from a quantum system. To tackle this question we here take on the study of quantum to classical randomness extractors (QC-extractors). We provide constructions of QC-extractors based on measurements in a full set of mutually unbiased bases (MUBs), and certain single qubit measurements. As the first application, we show that any QC-extractor gives rise to entropic uncertainty relations with respect to quantum side information. Such relations were previously only known for two measurements. As the second application, we resolve the central open question in the noisy-storage model [Wehner et al., PRL 100, 220502 (2008)] by linking security to the quantum capacity of the adversary’s storage device.

Recommendations

Loading...
Feedback
AV-Portal 3.5.0 (cb7a58240982536f976b3fae0db2d7d34ae7e46b)

Timings

  352 ms - page object