Bestand wählen
Merken

Quantum Money from Hidden Subspaces

Zitierlink des Filmsegments
Embed Code

Für dieses Video liegen keine automatischen Analyseergebnisse vor.

Analyseergebnisse werden nur für Videos aus Technik, Architektur, Chemie, Informatik, Mathematik und Physik erstellt, bei denen dies rechtlich zulässig ist.

Metadaten

Formale Metadaten

Titel Quantum Money from Hidden Subspaces
Serientitel The Annual Conference on Quantum Cryptography (QCRYPT) 2012
Anzahl der Teile 30
Autor Christiano, Paul
Mitwirkende Centre for Quantum Technologies (CQT)
National University of Singapore (NUS)
Lizenz CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 2.5 Schweiz:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/36672
Herausgeber Eidgenössische Technische Hochschule (ETH) Zürich
Erscheinungsjahr 2012
Sprache Englisch

Inhaltliche Metadaten

Fachgebiet Informatik
Abstract Forty years ago, Wiesner pointed out that quantum mechanics raises the striking possibility of money that cannot be counterfeited according to the laws of physics. We propose the first quantum money scheme that is (1) public-key, meaning that anyone can verify a banknote as genuine, not only the bank that printed it, and (2) cryptographically secure, under a “classical” hardness assumption that has nothing to do with quantum money. Our scheme is based on hidden subspaces, encoded as the zero-sets of random multivariate polynomials. A main technical advance is to show that the “black-box” version of our scheme, where the polynomials are replaced by classical oracles, is unconditionally secure. Even in Wiesner's original setting – quantum money that can only be verified by the bank – we are able to use our techniques to patch a major security hole in Wiesner's scheme. We give the first private-key quantum money scheme that allows unlimited verifications and that remains unconditionally secure, even if the counterfeiter can interact adaptively with the bank. Our money scheme is simpler than previous public-key quantum money schemes, including a knot-based scheme of Farhi et al. The verifier needs to perform only two tests, one in the standard basis and one in the Hadamard basis – matching the original intuition for quantum money, based on the existence of complementary observables.

Ähnliche Filme

Loading...
Feedback