We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Distributionally Robust Optimization with Principal Component Analysis

00:00

Formale Metadaten

Titel
Distributionally Robust Optimization with Principal Component Analysis
Serientitel
Anzahl der Teile
39
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk, we propose a new approximation method to solve distributionally robust optimization problems with moment-based ambiguity sets. Our approximation method relies on principal component analysis (PCA) for optimal lower dimensional representation of variability in random samples. We show that the PCA approximation yields a relaxation of the original problem and derive theoretical bounds on the gap between the original problem and its PCA approximation. Furthermore, an extensive numerical study shows the strength of the proposed approximation method in terms of solution quality and runtime.