We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Measuring the Value of Randomized Solutions in Distributionally Robust Optimization

Formal Metadata

Title
Measuring the Value of Randomized Solutions in Distributionally Robust Optimization
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This talk studies the value of randomized solutions (VRS) in distributionally robust mixed integer programming problems. We show different methods for obtaining upper bounds on VRS and identify conditions under which some of them are tight. We also devise and implement a column-generation algorithm for identifying optimal randomized solutions in two-stage distributionally robust optimization with right-hand-side uncertainty. We empirically illustrate our findings in a capacitated facility location problem where the distribution is known to be part of a Wasserstein ambiguity set. This is joint work with Ahmed Saif.