We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Distributionally Robust Optimal Designs

Formal Metadata

Title
Distributionally Robust Optimal Designs
Title of Series
Number of Parts
21
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The optimal design of experiments for nonlinear (or generalized-linear) models can be formulated as the problem of finding a design $\xi$ maximizing a criterion $\Phi(\xi,\theta)$, where $\theta$ is the unknown quantity of interest that we want to determine. Several strategies have been proposed to deal with the dependency of the optimal design on the unknown parameter $\theta$. Whenever possible, a sequential approach can be applied. Otherwise, Bayesian and Maximin approaches have been proposed. The robust maximin designs maximizes the worst-case of the criterion $\Phi(\xi,\theta)$, when $\theta$ varies in a set $\Theta$. In many cases however, such a design performs well only in a very small subset of the region $\Theta$, so a maximin design might be far away from the optimal design for the true value of the unknown parameter. On the other hand, it has been proposed to assume that a prior for $\theta$ is available, and to minimize the expected value of the criterion with respect to this prior. One objection to this approach is that when a sequential approach is not possible, we rarely have precise distributional information on the unkown parameter $\theta$. In the literature on optimization under uncertainty, the Bayesian and maximin approaches are known as "stochastic programming" and "robust optimization", respectively. A third way, somehow in between the two other paradigms, has received a lot of attention recently. The distributionally robust approach can be seen as a robust counterpart of the Bayesian approach, in which we optimize against the worst-case of all priors belonging to a family of probability distributions. In this talk, we will give equivalence theorems to characterize distributionally-robust optimal (DRO) designs. We will show that DRO-designs can be computed numerically by using semidefinite programming (SDP) or second-order cone programming (SOCP), and we will compare DRO-designs to Bayesian and maximin-optimal designs in simple cases.