We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Robust Quadratic Programming with Mixed-Integer Uncertainty

Formal Metadata

Title
Robust Quadratic Programming with Mixed-Integer Uncertainty
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We study robust convex quadratically constrained quadratic programs where the uncertain problem parameters can contain both continuous and integer components. Under the natural boundedness assumption on the uncertainty set, we show that the generic problems are amenable to exact copositive programming reformulations of polynomial size. The emerging convex optimization problems are NP-hard but admit a conservative semidefinite programming (SDP) approximation that can be solved efficiently. We prove that this approximation is stronger than the popular approximate S-lemma scheme for problem instances with only continuous uncertainty. We also show that all results can be extended to the two-stage robust optimization setting if the problem has complete recourse. We assess the effectiveness of our proposed SDP reformulations and demonstrate their superiority over the state-of-the-art solution schemes on stylized instances of least squares, project management, and multi-item newsvendor problems.