We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Distributionally Robust Stochastic and Online Optimization/Learning and its Applications

Formal Metadata

Title
Distributionally Robust Stochastic and Online Optimization/Learning and its Applications
Alternative Title
Distributionally Robust Stochastic and Online Optimization
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We present decision/optimization models/problems driven by uncertain and online data, and show how analytical models and computational algorithms can be used to achieve solution efficiency and near optimality. First, we describe recent applications of the Distributionally Robust Optimization in medical decision making. Secondly,we consider a common practice of estimating only marginal distributions and substituting joint distribution by independent (product) distribution in stochastic optimization, where we study possible loss incurred on ignoring correlations and quantify that loss as Price of Correlations (POC). Thirdly, we describe an online combinatorial auction problem using online linear programming technologies. We discuss near-optimal algorithms for solving this surprisingly general class of distribution-free online problems under the assumption of random order of arrivals and some conditions on the data and size of the problem.