We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Geometry and large N asymptotics in Laughlin states

00:00

Formal Metadata

Title
Geometry and large N asymptotics in Laughlin states
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Laughlin states are N-particle wave functions, successfully describing the fractional quantum Hall effect (QHE) for plateaux with simple fractions. It was understood early on, that much can be learned about QHE when Laughlin states are considered on a Riemann surface. Mathematically, it is interesting to know how do the Laughlin states depend on the Riemannian metric, magnetic potential function, complex structure moduli, singularities -- for the large number of particles N. I will review the results, conjectures and further questions in this area, and relation to topics such as Coulomb gases/beta-ensembles, Bergman kernels for holomorphic line bundles, Quillen metric, zeta determinants.