We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Large N duality of refined Chern-Simons invariants

Formal Metadata

Title
Large N duality of refined Chern-Simons invariants
Title of Series
Number of Parts
9
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Refined Chern-Simons invariants of torus knots can be defined by using modular matrices associated to Macdonald polynomials or DAHA, generalizing colored quantum invariants. The theory was originally defined in string theory, and conifold transition in string theory leads to a positivity conjecture of refined Chern-Simons invariants of torus knots. This conjecture connects refined Chern-Simons theory to enumerative geometry.