We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Neumann domains on manifolds and graphs

Formal Metadata

Title
Neumann domains on manifolds and graphs
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The nodal set of a Laplacian eigenfunction forms a partition of the underlying manifold or graph. Another natural partition is based on the gradient vector field of the eigenfunction (on a manifold) or on the extremal points of the eigenfunction (on a graph). The submanifolds (or subgraphs) of this partition are called Neumann domains. We present the main results concerning Neumann domains on manifolds and on graphs. We compare manifolds to graphs and relate the Neumann domain results on each of them to the nodal domain study. The talk is based on joint works with Lior Alon, Michael Bersudsky, Sebastian Egger, David Fajman and Alexander Taylor.