We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantum chaos in the Benjamini-Schramm limit

Formal Metadata

Title
Quantum chaos in the Benjamini-Schramm limit
Title of Series
Number of Parts
20
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
One of the fundamental problems in quantum chaos is to understand how high-frequency waves behave in chaotic environments. A famous but vague conjecture of Michael Berry predicts that they should look on small scales like Gaussian random waves. We will show how a notion of convergence for sequences of manifolds called Benjamini-Schramm convergence can give a satisfying formulation of this conjecture. The Benjamini-Schramm convergence includes the high-frequency limit as a special case but provides a more general framework. Based on this formulation, we will expand the scope and consider a case where the frequencies stay bounded and the size of the manifold increases instead. We will formulate the corresponding random wave conjecture and present some results to support it, including a quantum ergodicity theorem. Based on joint works with Tuomas Sahlsten, Miklos Abert and Nicolas Bergeron.