Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 16 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/39463 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
00:00
NiederspannungsnetzReed-RelaisVideotechnikComputeranimation
00:03
MessungModellbauerImpaktStörgrößeRaumladungsgebietDreidimensionale IntegrationKalenderjahrReaktionsprinzipErderJahreszeit
00:30
Optischer HalbleiterverstärkerLunkerUmlaufzeitModellbauerProzessleittechnikMikroklimaEnergieniveauBesprechung/Interview
00:54
MonatKalenderjahrErderWasserdampfFlugsimulatorBesprechung/Interview
01:16
WasserdampfTechnische Zeichnung
01:27
Me 263SchallAngeregter ZustandNiederfrequenzBesprechung/Interview
01:40
WasserdampfParallelschaltungSchiffsrumpfMignon <Schreibmaschine>Schwimmer <Technik>KalenderjahrStundeTagEnergieniveauNiederfrequenzSteckverbinderSchiffsrumpfDiagramm
02:02
NiederfrequenzWocheSteckverbinderTagKalenderjahrBesprechung/Interview
02:12
WindparkUmlaufzeitTemperaturSchieneWaagePuma <Panzer>Kraft-Wärme-KopplungGleitsichtglasIrrlichtKalenderjahrKopfstützeLangwelleVideotechnikJahreszeitUmlaufzeitWindparkRotverschiebungZelle <Mikroelektronik>NiederfrequenzVeränderlicher SternTechnische ZeichnungDiagramm
02:59
Maßstab <Messtechnik>Veränderlicher SternBesprechung/Interview
03:02
DrehenSchnittmuster
03:11
KalenderjahrWasserdampfSchnittmusterBehälterRotverschiebungKlangeffektMikroklimaBasis <Elektrotechnik>RegelstreckeDürreWarmumformen
Transkript: Englisch(automatisch erzeugt)
00:03
My name is Reed Maxwell. I'm a professor of hydrology here at Colorado School of Mines, and I direct the Integrated Groundwater Modeling Center. I'm Laura Condon. I'm a Ph.D. student at the Colorado School of Mines. We do know a lot about groundwater-fed irrigation, and we know a lot about first-order impacts from pumping and irrigation. We know about aquifer depletions and impacts to surface water bodies,
00:24
but we know a lot less about the ways that these actions impact the behavior of the underlying system. So what's valuable about simulating the process instead of looking for these aspects of the field is that we can run these very carefully controlled numerical experiments. We can look at forcing the model or running the model as if there were no agricultural results at all.
00:46
Then we can take that exact same time period and take that exact same weather, exact same climate signal, and then we can add in very carefully or in a very controlled way the groundwater-fed irrigation. We've coupled dynamic water management operations. So we're simulating at high frequencies,
01:04
so one-hour simulations for 20 years, moisture-dependent groundwater-fed irrigation. We designed our experiment to be applicable to other semi-arid basins with groundwater-fed irrigation. We are simulating a real basin with heterogeneous, realistic inputs, but we've implemented water management in basically a generic way so that we could apply our findings to other locations.
01:26
We use a technique called a Fourier transform, where we look in Fourier space, and really all that is is a way to understand frequencies of information. So just like there's frequencies of sound, you have frequencies of information in the same way.
01:42
So we look at, say, groundwater depths or water table levels every hour or every day over the 20 years of our simulation. Because we can look at this information, we look at that time series, and then instead of just looking at the time series itself of the variable,
02:00
we look at the correlation or the connections between different frequencies. So how connected is one day to the next versus one week to the next versus one year to the next. So what we have here is a log-log periodogram for an example farm point just to illustrate behavior in a cell where we have irrigation.
02:22
So in black, you can see the periodogram of the simulation without irrigation, and in blue, you see the periodogram with irrigation. And then over top, we fit trend lines to periods less than 0.8 years. And so the slope of those trend lines tells you the temporal persistence and basically the memory in the system.
02:41
And so what you can see here is that we have an increased annual peak, and that is because of the seasonal cycle of irrigation. And then you can also see that we have a little more subtle shift in the relative importance of high frequency versus low frequency variability. Our main finding is that pumping and irrigation do influence the temporal scale of variability
03:06
within the natural system, and we can see spatial patterns in these changes. One of the big implications for water management is that we can start to use these temporal patterns to better understand the dynamics of the system. And we can use this to better understand the sustainability of the system.
03:21
So if we see these shifts and we see these shifts in water demand, we can use these systematic shifts to better plan in general for how we manage water, how we use water on the day-to-day basis, and how we manage water on the year-to-year basis. And this is very important because of these seasonal cycles that we see and these wet and dry patterns that we see in the climate
03:42
and how we can better prepare, how we can better manage our water for drought, how we can better use our water in wetter years so that we have more storage for dry years.
Empfehlungen
Serie mit 4 Medien