We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering

Formal Metadata

Title
Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering
Title of Series
Number of Parts
16
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Solar geoengineering has been proposed as a method of meeting climate objectives, such as reduced globally averaged surface temperatures. However, because of incomplete understanding of the effects of geoengineering on the climate system, its implementation would be in the presence of substantial uncertainties. In our study, we use two fully coupled atmosphere–ocean general circulation models: one in which the geoengineering strategy is designed, and one in which geoengineering is implemented (a real-world proxy). We show that regularly adjusting the amount of solar geoengineering in response to departures of the observed global mean climate state from the predetermined objective (sequential decision making; an explicit feedback approach) can manage uncertainties and result in achievement of the climate objective in both the design model and the real-world proxy. This approach results in substantially less error in meeting global climate objectives than using a predetermined time series of how much geoengineering to use, especially if the estimated sensitivity to geoengineering is inaccurate.