We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Chirality dependent spin polarization of carbon nanotubes

00:00

Formale Metadaten

Titel
Chirality dependent spin polarization of carbon nanotubes
Serientitel
Anzahl der Teile
51
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The spin polarization of carbon nanotubes (CNTs) offers a tunable building block for spintronic devices and is also crucial for realizing carbon-based electronics. However, the effect of chiral CNTs is still unclear. In this paper, we use the density functional theory (DFT) method to investigate the spin polarization of a series of typical finite-length chiral CNTs (9, m). The results show that the spin density of chiral CNTs (9, m) decreases gradually with the increase in m and vanishes altogether when m is larger than or equal to 6. The armchair edge units on both ends of the (9, m) CNTs exhibit a clear inhibition of spin polarization, allowing control of the spin density of (9, m) CNTs by adjusting the number of armchair edge units on the tube end. Furthermore, analysis of the orbitals shows that the spin of the ground state for (9, m) CNTs mainly comes from the contributions of the frontier molecular orbitals (MOs), and the energy gap decreases gradually with the spin density for chiral CNTs. Our work further develops the study of the spin polarization of CNTs and provides a strategy for controlling the spin polarization of functional molecular devices through chiral vector adjustment.
NiederspannungsnetzSpinChiralität <Elementarteilchenphysik>Polarisierte StrahlungElementarteilchenphysikGleitlagerVideotechnikComputeranimation
SpinChiralität <Elementarteilchenphysik>Polarisierte StrahlungPorzellanSegelForschungszentrum RossendorfElementarteilchenphysikOptische SpektroskopieMaterial
Chiralität <Elementarteilchenphysik>NiederspannungsnetzSpinPolarisierte StrahlungMessungSchmiedenVideotechnikSpinAngeregter ZustandAnkerwicklungChannelingNiederspannungsnetzSpinpolarisationScheinbare HelligkeitVakuumröhreGrundzustandSchubvektorsteuerungSeeschiffKristallgitterNachtTiefdruckgebietChiralität <Elementarteilchenphysik>Kompendium <Photographie>KalenderjahrDruckgradientDiagramm
SpinNiederspannungsnetz
ElektronSpinGasdichteTotalreflexionSpinElektronendichte
KristallgitterComputeranimation
KristallgitterAbformungChirpComputeranimation
KristallgitterEnergielückeComputeranimation
SpinChiralität <Elementarteilchenphysik>GasdichteSpinElektronendichteNiederspannungsnetzSpinpolarisationEnergielückeComputeranimation
Transkript: Englisch(automatisch erzeugt)
Low-dimensional carbon nanostructures could possess spin polarization and their zigzag edges. For finite channel carbon nanotubes, the edge geometry varies with channel vector.
This introduces a channel tube dependence to their spin polarization. In typical 9M family, the spin polarization is forbidden when M is larger than 5. M remains with a gradual decrease from 9-0 to 9-5.
The ground states of these six tubes are all spin-polarized singlet states. Their opposite ends are antiferromagnetically spin-coupled. We firstly compare spin distribution on the ends of these tubes,
with the right point chosen as the reference point. In polar coordinates, we plot the neat spin of each carbon atom in the edge circle, besides taking the grain composed of carbon pathogens as a unit.
The length considered is from 2 to 5. The picture shows firstly in the magnitude. Spin polarization decreases with the increase of M,
and vanishes when M is larger than 5, as mentioned before. Secondly, in the line shape, the armature unit introduced when M is larger than 0 suppresses the spin polarization, cutting the circle with the number of tiers equal to M.
We also demonstrate the spin distribution along the tube. With the modified y-axis, it can be seen, the neat spin electron density along the tube also decreases with the increase of M.
The electronic structure, such as the morphology of HOMO and LUMO, is also modified by charity. It's not worth it that the gap decreases with the increase of M. This trend is inconsistent with that of spin distribution.
Moreover, when spin polarization is forbidden from 96 to 99, the variance of gap also loses uniform trend. Thus, the variance trend of spin density could characterize the charity dependence of HOMO-LUMO gap.