We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Anisotropic collisions of dipolar Bose–Einstein condensates in the universal regime

Formal Metadata

Title
Anisotropic collisions of dipolar Bose–Einstein condensates in the universal regime
Title of Series
Number of Parts
51
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We report the measurement of collisions between two Bose–Einstein condensates with strong dipolar interactions. The collision velocity is significantly larger than the internal velocity distribution widths of the individual condensates, and thus, with the condensates being sufficiently dilute, a halo corresponding to the two-body differential scattering cross section is observed. The results demonstrate a novel regime of quantum scattering, relevant to dipolar interactions, in which a large number of angular momentum states become coupled during the collision. We perform Monte-Carlo simulations to provide a detailed comparison between theoretical two-body cross sections and the experimental observations.