We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The thermodynamic cost of quantum operations

Formal Metadata

Title
The thermodynamic cost of quantum operations
Title of Series
Number of Parts
51
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The amount of heat generated by computers is rapidly becoming one of the main problems for developing new generations of information technology. The thermodynamics of computation sets the ultimate physical bounds on heat generation. A lower bound is set by the Landauer limit, at which computation becomes thermodynamically reversible. For classical computation there is no physical principle which prevents this limit being reached, and approaches to it are already being experimentally tested. In this paper we show that for quantum computation with a set of signal states satisfying given conditions, there is an unavoidable excess heat generation that renders it inherently thermodynamically irreversible. The Landauer limit cannot, in general, be reached by quantum computers. We show the existence of a lower bound to the heat generated by quantum computing that exceeds that given by the Landauer limit, give the special conditions where this excess cost may be avoided, and provide a protocol for achieving the limiting heat cost when these conditions are met. We also show how classical computing falls within the special conditions.