Community detection by graph Voronoi diagrams
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | 49 | |
Autor | ||
Lizenz | CC-Namensnennung 3.0 Unported: Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/38708 (DOI) | |
Herausgeber | ||
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
|
16
00:00
NiederspannungsnetzSensorGleitlagerElementarteilchenphysikVideotechnikComputeranimation
00:03
Sensor
00:08
KopfstützeSpeckle-InterferometrieDrehmasseGruppenlaufzeitKristallgitterTransporttechnikSchnittmusterDrachenpunktSensorDiagramm
00:54
Zelle <Mikroelektronik>Satz <Drucktechnik>Partitionierung
01:00
Satz <Drucktechnik>SEEDGeneratorZelle <Mikroelektronik>Diagramm
01:05
LinealPartitionierungSatz <Drucktechnik>PhotodissoziationGenerator
01:16
DrachenpunktAbstandsmessungDrachenpunkt
01:22
Drachenpunkt
01:27
LinealEGPRSDrachenpunktZelle <Mikroelektronik>GeneratorLinealComputeranimation
01:35
Elektronische MedienHobelGruppenlaufzeitSchiffsklassifikationGasdichteSchwarzSatz <Drucktechnik>Diagramm
01:57
Diagramm
02:02
Schwarzes LochGrünZelle <Mikroelektronik>SEEDGasdichteComputeranimation
02:13
KalenderjahrSEEDMessungHobelPartitionierungComputeranimationDiagramm
02:32
DrachenpunktLeistenDrachenpunktFamilie <Elementarteilchenphysik>Patrone <Munition>Speise <Technik>SensorAbstandsmessungKette <Zugmittel>GeneratorGasdichteMaßstab <Messtechnik>MessungDiagramm
03:05
EGPRSPagerGeneratorDrachenpunktAbstandsmessungComputeranimation
03:14
GeokoronaZylinderblockGeokorona
03:33
SensorEnergielückeBildqualitätComputeranimation
03:50
Computeranimation
03:58
Computeranimation
Transkript: Englisch(automatisch erzeugt)
00:03
We present a novel community detection algorithm using graph Voronoi diagrams. Many complex systems can be represented as networks. Social networks, transportation networks, networks defined on biological systems are just a few examples. A common challenge in studying complex networks is the identification of community structure.
00:24
In general, communities are defined as groups of nodes which are more densely connected to each other than with the rest of the network. However, this is a qualitative description and no common mathematical definition has been agreed upon. There are many different approaches. Clustering problems similar to graph community detection also occur in
00:44
data mining, pattern recognition, machine learning and statistical data analysis. These problems, however, are defined on continuous metric spaces simplifying their formulation. Voronoi diagrams are a common way of partitioning metric spaces into regions or cells around a given set of points
01:03
called seeds or generator points such that each point of the space belongs to the cell of the closest seed. A similar partitioning can be applied on graphs if we set a few generator nodes, associate positive values to edges and define the distance between any pair of nodes as the shortest path connecting the two nodes.
01:22
We have shown that graph Voronoi diagrams can be used to detect communities. We need rules for setting the lengths of edges and choosing the generator nodes. Then communities can be identified as the graph Voronoi cells. To explain the basic concept of our algorithm, we illustrated on a clustering problem defined in Euclidean space.
01:44
Imagine a set of points thrown onto a two-dimensional plane, unevenly distributed to form local groups. The question is, how can we partition the space to separate these clusters? First, we define a square lattice across the plane and calculate the local density in each small square as the number of black dots included in it.
02:06
Green stands for low, red for high density values. Second, we choose squares with the largest density within the neighborhood of a given radius r as Voronoi cell seeds. In this example, choosing the radius to be of four units yields seven seeds and corresponding neighborhoods.
02:23
Third, we assign each point of the plane to the seed closest to it. This yields a Voronoi partitioning diagram. Similar principles can be applied to obtain graph partitioning. We define the distance measure as the inverse of the edge clustering coefficient. This coefficient is large when two nodes connected have many common neighbors.
02:43
For detecting communities, larger clustering coefficient will indicate smaller distance. In graphs, each node is characterized by the link density of its neighborhood. For generator points, we choose nodes with the highest local density within a region of a given radius.
03:01
Varying this radius allows community detection at different scales. Overall, the algorithm has three main steps. Assigning distances to edges, identifying generator nodes and constructing the Voronoi diagram. When applying the algorithm, the best strategy is to gradually increase the radius. For example, this is how the clustering changes in the American political Bloch sphere network as the radius grows.
03:26
We tested the algorithm on many other real and benchmark networks, also discussing its computational efficiency. In summary, our method shows that a topology-based metric on graphs can open new ways to approach graph community detection,
03:41
narrowing the gap between the relatively young field of community detection and the well-explored realm of cluster analysis in data mining.