We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Collective force generated by multiple biofilaments can exceed the sum of forces due to individual ones

Formal Metadata

Title
Collective force generated by multiple biofilaments can exceed the sum of forces due to individual ones
Title of Series
Number of Parts
49
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Collective dynamics and force generation by cytoskeletal filaments are crucial in many cellular processes. Investigating growth dynamics of a bundle of N independent cytoskeletal filaments pushing against a wall, we show that chemical switching (ATP/GTP hydrolysis) leads to a collective phenomenon that is currently unknown. Obtaining force-velocity relations for different models that capture chemical switching, we show, analytically and numerically, that the collective stall force of N filaments is greater than N times the stall force of a single filament. Employing an exactly solvable toy model, we analytically prove the above result for N = 2. We, further, numerically show the existence of this collective phenomenon, for , in realistic models (with random and sequential hydrolysis) that simulate actin and microtubule bundle growth. We make quantitative predictions for the excess forces, and argue that this collective effect is related to the non-equilibrium nature of chemical switching.