We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exploring the adaptive voter model dynamics with a mathematical triple jump

Formal Metadata

Title
Exploring the adaptive voter model dynamics with a mathematical triple jump
Title of Series
Number of Parts
49
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Progress in theoretical physics is often made by the investigation of toy models, the model organisms of physics, which provide benchmarks for new methodologies. For complex systems, one such model is the adaptive voter model. Despite its simplicity, the model is hard to analyze. Only inaccurate results are obtained from well-established approximation schemes that work well on closely-related models. We use the adaptive voter model to illustrate a new approach that combines (a) the use of a heterogeneous moment expansion to approximate the network model by an infinite system of ordinary differential equations (ODEs), (b) generating functions to map the ODE system to a two-dimensional partial differential equation (PDE), and (c) solution of this partial differential equation by the tools of PDE-theory. Beyond the adaptive voter models, the proposed approach establishes a connection between network science and the theory of PDEs and is widely applicable to the dynamics of networks with discrete node-states.