We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Parametrized model order reduction for component-to-system synthesis

00:00

Formal Metadata

Title
Parametrized model order reduction for component-to-system synthesis
Title of Series
Number of Parts
25
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Parametrized PDE (Partial Differential Equation) Apps are PDE solvers which satisfy stringent per-query performance requirements: less-than or approximate 5-second problem specification time; less-than or approximate 5-second problem solution time, field and outputs; less-than or approximate 5% solution error, specified metrics; less-than or approximate 5-second solution visualization time. Parametrized PDE apps are relevant in many-query, real-time, and interactive contexts such as design, parameter estimation, monitoring, and education. In this talk we describe and demonstrate a PDE App computational methodology. The numerical approach comprises three ingredients: component => system synthesis, formulated as a static-condensation procedure; model order reduction, informed by evanescence arguments at component interfaces (port reduction) and low-dimensional parametric manifolds in component interiors (reduced basis techniques); and parallel computation, implemented in a cloud environment. We provide examples in acoustics and also linear elasticity.