We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Second order Lyapunov exponent for hyperbolic Anderson model

Formal Metadata

Title
Second order Lyapunov exponent for hyperbolic Anderson model
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk, we examine the connection between the hyperbolic and parabolic Anderson models in arbitrary space dimension d, with constant initial condition, driven by a Gaussian noise which is white in time. We consider two spatial covariance structures: (i) the Fourier transform of the spectral measure of the noise is a non-negative locally-integrable function; (ii) d = 1 and the noise is a fractional Brownian motion in space with index 1/4 < H < 1/2. In both cases, we show that there is striking similarity between the Laplace transforms of the second moment of the solutions to these two models. Building on this connection and the recent powerful results of Huang, Le and Nualart (2017) for the parabolic model, we compute the second order (upper) Lyapunov exponent for the hyperbolic model. In case (i), when the spatial covariance of the noise is given by the Riesz kernel, we present a unified method for calculating the second order Lyapunov exponents for the two models.