We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Data-driven wildfire behavior modelling: focus on front level-set data assimilation

Formal Metadata

Title
Data-driven wildfire behavior modelling: focus on front level-set data assimilation
Title of Series
Number of Parts
25
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A front data assimilation system named FIREFLY has been developed at CERFACS in collaboration with the University of Maryland to better estimate the environmental conditions (biomass properties, near-surface wind). We discuss the sequential application of the ensemble Kalman filter (EnKF) in FIREFLY for correcting in a spatially-distributed way, input parameters in order to better track the fire front position. In particular, using a polynomial chaos surrogate to mimic the wildfire spread model in the EnKF algorithm was found in collaboration with LIMSI to be a promising strategy to reduce the computational cost of FIREFLY. We also discuss the way we represent the distance between simulated and observed fronts. In the CEMRACS project, a new discrepancy operator will be introduced to better represent the match (or mismatch) between simulated fronts and mid-infrared observations in collaboration with INRIA. This front level-set data assimilation derived from image processing and designed for electrophysiology will be extended to wildfire spread monitoring.