We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Radio-frequency-modulated Rydberg states in a vapor cell

00:00

Formale Metadaten

Titel
Radio-frequency-modulated Rydberg states in a vapor cell
Serientitel
Anzahl der Teile
51
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the and Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.
NiederspannungsnetzZelle <Mikroelektronik>ElementarteilchenphysikGleitlagerVideotechnikComputeranimation
FunkgerätZelle <Mikroelektronik>NiederfrequenzWarmumformenComputeranimation
DiodeZelle <Mikroelektronik>FrequenzbereichVergaserAperturantenneZelle <Mikroelektronik>SondePolradFeldstärkeFestkörperAtomistikMessungGauß-BündelBandbreite <Elektrotechnik>KristallgitterTeilchenbeschleunigerBettNiederfrequenzFunkgerätPatrone <Munition>Angeregter ZustandBesprechung/Interview
Elektrisches SignalTonfrequenzDiodeZelle <Mikroelektronik>Zelle <Mikroelektronik>InfrarotlaserNiederfrequenzAmplitudeSondeAstronomisches FensterElektrisches SignalAtomistikPassfederTonfrequenzTechnische ZeichnungDiagramm
ElektrodeDiodeZelle <Mikroelektronik>Zelle <Mikroelektronik>ElektrodeNiederfrequenzSchlauchkupplungTonfrequenzSpannungsänderungPlattierenDiagramm
AmplitudeElektrisches SignalTonfrequenzSeitenbandFiat 500VideotechnikSpannungsänderungSeitenbandLeistungssteuerungNiederfrequenzComputeranimationDiagramm
LeistungssteuerungDirekteinspritzungRotverschiebungStörgrößeEnergieniveauWasserstoffatomSteckkarteTransparentpapierDiagramm
AmplitudeElektrizitätIntensitätsverteilungLeistungssteuerungDirekteinspritzungTonfrequenzAirbus 300MessungFeldstärkeTechnische ZeichnungDiagramm
LeistungssteuerungDirekteinspritzungEnergieniveauFrequenzbereichTechnische ZeichnungDiagramm
AmplitudeElektrizitätIntensitätsverteilungEnergieniveauSeitenbandRegentropfenEnergielückeTonfrequenzFrequenzbereichEnergieniveauSchmalspurlokomotiveEnergielückeVideotechnikWasserstoffatomSeitenbandKalenderjahrSpannungsmessung <Elektrizität>Diagramm
AtomistikMessungGrundfrequenzStandardzelleAbsoluter NullpunktAtombauTonfrequenzBesprechung/Interview
Transkript: Englisch(automatisch erzeugt)
Hi, my name is Stephanie Miller. I will be introducing you to some recent work done by myself, David Anderson, and Garreg Reithel. In this work, we are interested in using Rydberg atoms to measure strong radiofrequency, RF, electric fields. To date, these fields have been measured using antennas or similar solid state structures.
However, these methods are limited in bandwidth and measurable field strength. Additionally, the metallic device alters the field, which introduces an inherent uncertainty in the measurement. Recently, a technique has been developed to measure RF fields using atoms, which eliminates many of these problems.
This is done by optically probing the response of Rydberg atoms in a vapor cell to the incident RF field using the Electromagnetically Induced Transparency, known as EIT. Using this method, we are able to measure strong fields with higher accuracy than traditional probe antennas. Let me explain what this all means. Here we see a schematic of our experimental setup.
At the center of the setup is a vapor cell filled with, in our case, rubidium atoms. In the cell, there are two concert-propagating beams that drive the atoms to an excited state, known as a Rydberg state. When the lasers are adjusted to the appropriate frequencies and powers, a frequency window is produced for the probe beam, resulting in the signal you see here.
We look at how the EIT peak changes when the atoms in the cell are exposed to an RF field. By quantifying this behavior, we are able to determine properties about the field within the cell. To create a field for the atoms, we apply voltages to the electrode plates surrounding the cell with an RF frequency.
We apply frequencies of 50 and 100 MHz, so no nearby Rydberg states are coupled. As the applied voltage increases, we see that the EIT lines begin to shift in frequency. At high enough powers, sidebands occur at even multiples of the driving frequency, and all the lines continue to shift.
By combining the traces, we compile a spectral map of the energy levels as a function of the RF field. We are able to create and measure a field strong enough where adjacent energy levels mix with the state of interest.
Specifically, we see the intersection of hydrogenic states. Here, perturbation theory does not adequately describe the energy shifts for the states. We turn to Floquet theory, which is an exact method of calculating the energy levels.
By comparing the calculated map with the measured map, we are able to determine what field strength is reached at the center of the cell, as well as an upper bound on the precision of the measurement. Depending on which state we choose to optically drive, we are able to see different features, allowing us different levels of precision.
Spectral features of interest include the emergence of sidebands, level crossings, narrow anticrossings, band dropouts, and hydrogenic lines. Using this method, we are able to measure strong fields of about 300 V per meter to within 0.35%.
There are other advantages to the atom-based measurement technique for RF electric fields. This includes the ability to measure a wide range of frequencies, from megahertz to sub-terrahertz, as well as providing an absolute field measurement based on invariable atomic structure and fundamental constants. This measurement method also holds promise for establishing a new atomic standard for field measurements.