We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Nanofluid down an incline: nonlinear description of ion-induced solid flow

00:00

Formal Metadata

Title
Nanofluid down an incline: nonlinear description of ion-induced solid flow
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We will describe the derivation of a nonlinear evolution equation that describes space-time self-organization at the free surface of a solid target undergoing irradiation by an energetic ion beam. Under this type of driving, for many materials the outermost surface layer of the target responds as a highly viscous fluid, displaying formation of nanoscale ripples in macroscopic time scales. In spite of the irrelevance of gravity at these small distances, the weakly nonlinear limit of the equation resembles the well known description of a macroscopic incompressible viscous thin film flowing down an incline, which is a paradigmatic instance of free surface flow systems for which the morphological instability responsible for pattern formation is controlled by inertial effects. The predictive power of the evolution equation for ion-beam surface nanopatterning underscores nonlinear effects that might have been expected to be of a secondary importance in such a nanoscopic-scale, Stokes-flow system. The content of this talk is joint work with Mario Castro (Universidad Pontificia Comillas) and Javier Muñoz-García (UC3M).