We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Integrable systems and spectral curves

00:00

Formal Metadata

Title
Integrable systems and spectral curves
Title of Series
Number of Parts
22
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Usually one defines a Tau function Tau(t_1,t_2,...) as a function of a family of times having to obey some equations, like Miwa-Jimbo equations, or Hirota equations. Here we shall view times as local coordinates in the moduli-space of spectral curves, and define the Tau-function of a spectral curve Tau(S), in an intrinsic way, independent of a choice of coordinates. Deformations are tangent vectors, and the tangent space is isomorphic to the space of cycles (cf Goldman bracket), so that Hamiltonians can be represented by cycles. All the integrable system formalism can then be represented geometrically in the space of cycles: the Poisson bracket is the intersection, the conserved quantities are periods, Miwa-Jimbo equations and Seiberg-Witten equations are a mere consequence of the definition, Hirota equation is a vanishing monodromy condition, and Virasoro-W constraint are automatically satisfied by our definition, showing that our Tau-function is also a conformal block. Our definition contains KdV, KP multicomponent KP, Hitchin systems, and probably all known classical integrable systems.