We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The supercooled Stefan problem

Formal Metadata

Title
The supercooled Stefan problem
Title of Series
Number of Parts
22
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We will consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We will provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to transition between (i) continuous differentiability, (ii) Holder continuity, and (iii) discontinuity. In particular, in the second regime we rediscover the square root behavior of the growth process pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem. In our second main theorem, we will establish the uniqueness of the global solutions, a first result of this kind in the context of growth processes with singular self-excitation when blow-ups are present. Based on joint work with Francois Delarue and Sergey Nadtochiy.