We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Statistical properties of singular hyperbolic attractors

00:00

Formale Metadaten

Titel
Statistical properties of singular hyperbolic attractors
Serientitel
Anzahl der Teile
19
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The classical Lorenz attractor (Lorenz 1963) satisfies various statistical properties such as existence of an SRB measure, central limit theorems, and exponential decay of correlations. The main ingredients are that the attractor is singularly hyperbolic with a Cr stable foliation for some r>1. Certain classes of Lorenz attractors have been obtained analytically for the extended Lorenz equations by Dumortier, Kokubu \& Oka, and more recently by Ovsyannikov \& Turaev. These attractors are singularly hyperbolic but do not have a smooth stable foliation. The aim in this talk (joint work with Vitor Araujo) is to consider statistical properties for singular hyperbolic attractors that do not have a smooth stable foliation. It turns out that existence of an SRB measure, central limit theorems, and mixing hold as in the classical case. But exponential decay of correlations looks currently hopeless. Proving rates of mixing (eg superpolynomial decay) looks perhaps a bit less hopeless.