We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Singular perturbations for hyperbolic port-Hamiltonian and non-hyperbolic systems

00:00

Formal Metadata

Title
Singular perturbations for hyperbolic port-Hamiltonian and non-hyperbolic systems
Title of Series
Number of Parts
13
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk we explore the methodology of model order reduction based on singular perturbations for a fexible-joint robot within the port-Hamiltonian framework. The model is an ode model that is obtained after discretisation. We show that a fexible-joint robot has a port-Hamiltonian representation which is also a singularly perturbed ordinary differential equation. Moreover, the associated reduced slow subsystem corresponds to a port-Hamiltonian model of a rigid-joint robot. To exploit the usefulness of the reduced models, we provide a numerical example where an existing controller for a rigid robot is implemented. In addition, we provide ideas on how to expand this to planar slow-fast systems at a non-hyperbolic point. At these type of points, the classical theory of singular perturbations is not applicable and new techniques need to be introduced in order to design a controller that stabilizes such a point. We show for some class of nonlinear systems that using geometric desingularization (also known as blow up), it is possible to design, in a simple way, controllers that stabilize non-hyperbolic equilibrium points of slow-fast systems. Furthermore, we include controller design in the development.
Keywords