We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Statistical properties of singular hyperbolic attractors

Formal Metadata

Title
Statistical properties of singular hyperbolic attractors
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The classical Lorenz attractor (Lorenz 1963) satisfies various statistical properties such as existence of an SRB measure, central limit theorems, and exponential decay of correlations. The main ingredients are that the attractor is singularly hyperbolic with a Cr stable foliation for some r>1. Certain classes of Lorenz attractors have been obtained analytically for the extended Lorenz equations by Dumortier, Kokubu \& Oka, and more recently by Ovsyannikov \& Turaev. These attractors are singularly hyperbolic but do not have a smooth stable foliation. The aim in this talk (joint work with Vitor Araujo) is to consider statistical properties for singular hyperbolic attractors that do not have a smooth stable foliation. It turns out that existence of an SRB measure, central limit theorems, and mixing hold as in the classical case. But exponential decay of correlations looks currently hopeless. Proving rates of mixing (eg superpolynomial decay) looks perhaps a bit less hopeless.