We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Slow/fast mixing/escape

Formal Metadata

Title
Slow/fast mixing/escape
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In order to obtain a good statistical theory for a system with a hole in it, the heuristic is that the (exponential) speed of mixing must dominate the (exponential) rate at which mass leaks from the system: so the hole must be appropriately `small'. I'll present joint work with Mark Demers where we analysed this idea for a simple class of systems (Manneville-Pomeau maps with certain `geometric' equilibrium states), giving a complete picture of how the competition between mixing and escape lead to different statistical behaviour. We show a transition from the usual picture of good statistical properties, through a (non-trivial) zone where mixing and escape match exactly, with a terminal transition to subexponential mixing.