We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

LG/CY correspondence for one-folds via modularity

00:00

Formale Metadaten

Titel
LG/CY correspondence for one-folds via modularity
Serientitel
Anzahl der Teile
18
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Gromov-Witten invariants of Calabi-Yau one-folds (including elliptic curves and elliptic orbifold curves) are quasimodular forms. This can be proved using tautological relations and some ordinary differential equations in the theory of quasimodular forms, with minimal calculations. Such a method is also applicable to the Fan-Jarvis-Ruan-Witten theory of simple elliptic singularities. This allow us to prove the LG/CY correspondence for all CY one-folds using Cayley transformation of quasimodular forms, where GW/FJRW invariants are coefficients of Fourier/Taylor expansions of the same quasimodular forms. This talk is based on joint work with Jie Zhou, and Jun Li, Jie Zhou.