We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Stable pairs with a twist

00:00

Formal Metadata

Title
Stable pairs with a twist
Title of Series
Number of Parts
18
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The moduli of stable log varieties or stable pairs (X,D) are the higher dimensional analogue of the compactified moduli of stable pointed curves. The existence of a proper moduli space has been established thanks to the last several decades of advancements in the minimal model program. However, the notion of a family of stable pairs remains quite subtle, and in particular a deformation-obstruction theory for these moduli is not known. When the boundary divisor D is empty, Abramovich and Hassett gave an approach to stable varieties that replaces X with an associated orbifold. They show in this setting that the quite subtle notion of family of stable varieties becomes simply a flat family of the associated orbifolds. We extend this approach to the case where there is a nonempty but reduced boundary divisor D with the hopes of producing a deformation-obstruction theory for these moduli spaces. As an application we show that this approach leads to functorial gluing morphisms on the moduli spaces, generalizing the clutching and gluing morphisms that describe the boundary strata of the moduli of curves. This is joint work with G. Inchiostro.