We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

K3 surfaces with symplectic group actions, enumerative geometry, and modular forms

Formal Metadata

Title
K3 surfaces with symplectic group actions, enumerative geometry, and modular forms
Title of Series
Number of Parts
18
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The Hilbert scheme parameterizing n points on a K3 surface X is a holomorphic symplectic manifold with rich properties. In the 90s it was discovered that the generating function for the Euler characteristics of the Hilbert schemes is related to both modular forms and the enumerative geometry of rational curves on X. We show how this beautiful story generalizes to K3 surfaces with a symplectic action of a group G. Namely, the Euler characteristics of the "G-fixed Hilbert schemes” parametrizing G-invariant collections of points on X are related to modular forms of level |G| and the enumerative geometry of rational curves on the stack quotient [X/G] . These ideas lead to some beautiful new product formulas for theta functions associated to root lattices. The picture also generalizes to refinements of the Euler characteristic such as χy genus and elliptic genus leading to connections with Jacobi forms and Siegel modular forms.