We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Heat kernel smoothing, hot spots conjecture and Fiedler vector

Formal Metadata

Title
Heat kernel smoothing, hot spots conjecture and Fiedler vector
Title of Series
Number of Parts
21
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The second eigenfunction of the Laplace-Beltrami operator (often called Fiedler vector in discrete settings) follows the pattern of the overall shape of an object. This geometric property is well known and used for various applications including mesh processing, feature extraction, manifold learning, spectral embedding and the minimum linear arrangement problem. Surprisingly, this geometric property has not been precisely formulated yet. This problem is directly related to the somewhat obscure hot spots conjecture in differential geometry that postulates the behavior of heat diffusion near boundary. The aim of the talk is to discuss and raise the awareness of the problem. As an application of the hot spots conjecture, we show how the second eigenfunction alone can be used for shape modeling of elongated anatomical structures such as hippocampus and mandible, and determining the diameter of large-scale brain networks. This talk is based on Chung et al. 2015 Medical Image Analysis 22:63076.