Navier-Stokes Equation

Video thumbnail (Frame 0) Video thumbnail (Frame 217) Video thumbnail (Frame 317) Video thumbnail (Frame 579) Video thumbnail (Frame 759) Video thumbnail (Frame 874) Video thumbnail (Frame 1130) Video thumbnail (Frame 1380) Video thumbnail (Frame 1688) Video thumbnail (Frame 2762) Video thumbnail (Frame 2922) Video thumbnail (Frame 3127) Video thumbnail (Frame 3447) Video thumbnail (Frame 3687) Video thumbnail (Frame 3894) Video thumbnail (Frame 4595) Video thumbnail (Frame 4801) Video thumbnail (Frame 6648) Video thumbnail (Frame 7128)
Video in TIB AV-Portal: Navier-Stokes Equation

Formal Metadata

Navier-Stokes Equation
Alternative Title
Navier-Stokes Gleichung
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
IWF Signature
C 13096
Release Date
Universität Kaiserslautern, Fachbereich Physik, AG Jodl (Kaiserslautern)
Production Year

Technical Metadata

IWF Technical Data
Video ; F, 4 min 45 sec

Content Metadata

Subject Area
Um das Geschwindigkeitsfeld einer instationären Strömung zu bestimmen, ist die sog. "Particle Image Velocimetry" eine geeignete Methode. Mit Hilfe des zurückgelegten Weges einzelner Teilchen und der vergangenen Zeitspanne wird das Geschwindigkeitsfeld einer Strömung bestimmt. Das Verfahren wird auf eine reale Strömung angewendet, die Ergebnisse werden festgehalten. Die wichtigsten Beobachtungen kann man nun mit der theoretischen Beschreibung einer realen Strömung durch die Navier-Stokes-Gleichung vergleichen.
To determine the velocity field of a current the so-called "particle image velocimetry" is a suitable method. With the help of the distance of individual particles and the time interval the velocity field of a current is determined. The procedure is applied at a real current, the results are noted. One can compare the most important observations with the theoretical description by the Navier-Stokes equation.
Keywords Strömung Particle Image Velocimetry (PIV) instationäre Strömung Geschwindigkeitsfeld Stokes, George Gabriel Navier, Claude Louis Marie Henri Navier-Stokes-Gleichungen Navier-Stokes Navier-Stokes Navier-Stokes equations Navier, Claude Louis Marie Henri Stokes, George Gabriel velocity field particle image velocimetry (PIV) current
Computer animation
Speckle imaging Computer animation Volumetric flow rate Hypothetisches Teilchen Fahrgeschwindigkeit
Computer animation
Speckle imaging Computer animation Fahrgeschwindigkeit
Speckle imaging Cosmic distance ladder Computer animation Hypothetisches Teilchen Laser Book cover Video Elementary particle Workshop
Speckle imaging Separation process Cosmic distance ladder Computer animation Fahrgeschwindigkeit Hypothetisches Teilchen Elementary particle
Computer animation Volumetric flow rate Fahrgeschwindigkeit Map
Computer animation Volumetric flow rate Fahrgeschwindigkeit
Computer animation Fahrgeschwindigkeit
Direct current Computer animation Volumetric flow rate Fahrgeschwindigkeit Differential (mechanical device)
Direct current Acceleration Computer animation Volumetric flow rate Fahrgeschwindigkeit Bahnelement Atmospheric pressure Viscosity Spare part Differential (mechanical device) Force
Acceleration Computer animation Atmosphärische Turbulenz
the Navier-Stokes equation but
the so called particle image velocimetry is suitable for visualizing the velocity field of an instationary flow the method is
based on the idea of putting fine particles into a fluid and
comparing successive images with each
other then the velocity of each
particle is determined with the cover distance and the time passed In the experimental set up of the method 1
uses a pulsed laser to create shop video images of the moving particles 2 successive images
are processed so that the velocity can be determined with the time passed and the covered distance here delta x 1 can illustrate
exemplarily the procedure with the Sean experiment in image 1 observes a particle at the position r 1 at the time t 1 after the time delta t 1 sees on the success of image that the particle has covered the distance that R R 1 1 obtains the velocity at the position r 1 which can be illustrated with the vector to obtain an image of the total velocity field the procedure must be repeated for many particles several times
finally 1 obtains a vector map of the flow velocity field that
varies in space and time to
show the spatial dependence of the velocity field each point of the flow is
colored according to the absolute value of the velocity 1 observes that the absolute value of the velocity varies in space this means that the gradient of the
square of you is generally not 0 that In the next step 1 compares the
directions of the velocity it's 2 different positions are 1 and R 2 1 sees also that the
direction varies in space the the the further the velocity varies in time at the position r 2 for example the partial time differentiation is not 0 according to the instationary flow here is the
velocity in a vector diagram at equidistant points in time the the
important observations can be compared with the theoretical description of a flow by the Navier-Stokes equation to set up the equation of motion for an infinitesimal volume element of a viscous fluid 1st 1 starts with a Newtonian axiom on the left side of the equation different forces are part of the total force F the the pressure force the gravitational force and the viscous force the the total time differentiation of the velocity on the right side called substantial acceleration can be splitted into Adams the partial time differentiation and for the time dependence of the velocity u at a certain position the and the term for the spatial variation which can be stated again in 2 parts the the 1st depends on the absolute value of the velocity and the 2nd depends on the direction all parts of the substantial
acceleration play a role in the show and turbulent flow