Merken

Coriolis- and Centrifugal Force in a Rotating Frame of Reference

Zitierlink des Filmsegments
Embed Code

Automatisierte Medienanalyse

Beta
Erkannte Entitäten
Sprachtranskript
Hey Coriolis and centrifugal force in a rotating frame of reference as 1 can see with these clouds error
does not move straight into a zone of low pressure but on a spiral the rotation of a low pressure storm on the northern hemisphere is opposite to
1 on the southern hemisphere to study the phenomenon in a rotating frame of reference
we examine the movement of a ball from 2 or different frames of reference the a disk with a radius of 23 . 5 centimeters rotates around its centre 1 camera is connected to the table and shows the inertial frame of reference the other rotates with the disk and thus shows a rotating frame of reference here the schematic setup of the
experiment the ball it accelerated by a gravitational force in a guide rail and keeps moving practically force-free with constant speed after leaving it in the
picture of the camera in the inertial frame of reference on the top left the table in the background appears to be fixed In the rotating frame of reference on the top right the background seems to rotate why the disk is fixed 1 has to remember that both cameras show the same experiment recorded at the same time the angular speed is 1 hertz but
to examine the trajectories we register the position of the ball with the red dot the because of the limited frame rate of the camera the position of the ball is unclear on some pictures the inaccuracy of the measured position of the ball is approximately 1 centimeter radially and 1 degree tangentially the time measurement starts when the ball is in the center of the disk check for a quantitative analysis we use polar coordinates with 0 degrees in the direction the ball moves when heating the guide rail here 1 sees the complete
diagram in polar coordinates the
the same movement is now examined in the rotating frame of reference using the
same method check the position of the ball is again
shown in polar coordinates
In the inertial frame of reference the ball
moves nearly on a straight line it moves along a curve in the rotating frame of reference although it is the same experiment examined in both cases the measured values
location and velocity and acceleration are denoted ah V and 80 in the inertial frame of reference the In the rotating frame of reference and apostrophes analyzing the results 1 sees while the ball in the inertial frame of reference moves nearly force-free and thus without acceleration this is not true for the rotating frame of reference they're the acceleration is unequal to 0 the this means that 1 has to implement inertial forces because of the relative acceleration of the systems With this inertial force the movement of the ball can be explained in both systems using Newton's 2nd Law the thus the rotating frame of reference is a non-inertial frame of reference the transformation of location velocity and acceleration between both frames requires e questions of transformation the additional force in the rotating frame of reference is composed of Coriolis force and centrifugal force the the Coriolis force takes effect perpendicular to the velocity of the examined element the centrifugal force is always directed outwards
Rotationszustand
Coriolis-Kraft
Wolke
Fehlprägung
Zentrifugalkraft
Bildfrequenz
Computeranimation
Gruppenlaufzeit
Bildfrequenz
Coriolis-Kraft
Elementarteilchenphysik
Direkte Messung
Druckkraft
Zentrifugalkraft
Rotationszustand
Spiralgalaxie
Höhentief
Bildfrequenz
Besprechung/Interview
September
Sturm
Druck
Brillouin-Zone
Sturm
Scheibenbremse
Rotationszustand
Scheibenbremse
Kugelblitz
Treibriemen
Bildfrequenz
Stromschiene
Motor
Störstelle
Computeranimation
Uhrwerk
Scheibenbremse
Hintergrundstrahlung
Bildfrequenz
Trajektorie <Meteorologie>
Computeranimation
Scheibenbremse
Messung
Gleichstrom
Kugelblitz
Bildfrequenz
Stromschiene
Proof <Graphische Technik>
Technische Zeichnung
Begrenzerschaltung
Trajektorie <Meteorologie>
Computeranimation
Bildfrequenz
Trajektorie <Meteorologie>
Computeranimation
Uhrwerk
Scheibenbremse
Kugelblitz
Technische Zeichnung
Kugelblitz
Trajektorie <Meteorologie>
Technische Zeichnung
Bildfrequenz
Computeranimation
Trägheitskraft
Kugelblitz
Fahrgeschwindigkeit
Beschleunigung
Übungsmunition
Druckkraft
Computeranimation
Uhrwerk
Großtransformator
Bildfrequenz
Fahrgeschwindigkeit
Coriolis-Kraft
Bahnelement
Druckkraft
Klangeffekt
Unterwasserfahrzeug
Drosselklappe
Zentrifugalkraft
Niederspannungsnetz
Computeranimation

Metadaten

Formale Metadaten

Titel Coriolis- and Centrifugal Force in a Rotating Frame of Reference
Alternativer Titel Coriolis- und Zentrifugalkraft im rotierenden Bezugssystem
Autor Jodl, Hans-Jörg
Lizenz CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.3203/IWF/C-13095eng
IWF-Signatur C 13095
Herausgeber IWF (Göttingen)
Erscheinungsjahr 2007
Sprache Englisch
Produzent Universität Kaiserslautern, Fachbereich Physik, Arbeitsgruppe Jodl (Kaiserslautern)
Produktionsjahr 2004

Technische Metadaten

IWF-Filmdaten Video ; F, 6 min 21 sec

Inhaltliche Metadaten

Fachgebiet Physik
Abstract Das Verhalten einer Kugel auf einer rotierenden Scheibe wird aus der Sicht eines außenstehenden wie aus der Sicht eines mitrotierenden Beobachters untersucht. Man beobachtet die Krümmung der Bahnkurve im rotierenden System und führt aufgrund der Relativbeschleunigung des rotierenden Systems zusätzliche Trägheitskräfte ein, um die Bewegung der Kugel im rotierenden System mit Hilfe des zweiten Newtonschen Axioms erklären zu können.
The trajectory of a ball on a rotating disk is examined both from the point of view of an outside person and from the point of view of a rotating observer. One observes the curvature of the trajectory in the rotating system and introduces additional forces, in order to be able to explain the movement of the ball in the rotating system with the help of the Newton's second axiom.
Schlagwörter Zweites Newtonsches Axiom: Das Aktionsprinzip ("lex secunda")
2. Newtonsches Axiom
Trägheitskraft
Relativbeschleunigung
rotierendes System
Zentrifugalkraft
Corioliskraft
Coriolis force
Coriolis effect
centrifugal force
trajectory
rotating system
Newton's second axiom
Newton's second law: law of acceleration
acceleration

Ähnliche Filme

Loading...