We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Surfaces in 4-manifolds and 1-stable equivalence

00:00

Formale Metadaten

Titel
Surfaces in 4-manifolds and 1-stable equivalence
Serientitel
Anzahl der Teile
12
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Wall's stable h-cobordism theorem states that homotopy equivalent, smooth simply-connected 4-manifolds become diffeomorphic after stabilizing, i.e. connected summing with some finite number of a S^2-bundle over S^2. And, in fact, all known examples need only one stabilization to be diffeomorphic. In this talk, we will talk about the analogous stabilization question for knotted surfaces in simply-connected 4-manifolds produced by all of the known constructions based on Fintushel-Stern knot surgery. And we will prove that any pair of these knotted surfaces that preserve the fundamental groups of their complements become all diffeomorphic after single stabilization.