We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Geography of symplectic fillings in dimension 4

Formal Metadata

Title
Geography of symplectic fillings in dimension 4
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We introduce the Kodaira dimension of contact 3-manifolds and show that contact 3-manifolds with distinct Kodaria dimensions behave differently when it comes to the geography of various kinds of fillings. We also prove that, given any contact 3-manifold, there is a lower bound of $2\ chi+ 3\ sigma $ for all its minimal symplectic fillings. This generalizes the similar bound of Stipsicz for Stein fillings. This talk is based on joint works with Cheuk Yu Mak, and partly with Koichi Yasui.