We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

1/4 On the Arakelov theory of arithmetic surfaces

Formal Metadata

Title
1/4 On the Arakelov theory of arithmetic surfaces
Title of Series
Part Number
1
Number of Parts
4
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Let X be a semi-stable arithmetic surface of genus at least two and $\omega$ the relative dualizing sheaf of X, equipped with the Arakelov metric. Parshin and Moret-Bailly have conjectured an upper bound for the arithmetic self-intersection of $\omega$. They proved that a weak form of the abc conjecture follows from this inequality. We shall discuss a way of making their conjecture more precise in order that it implies the full abc conjecture (a proof of which has been announced by Mochizuki). March 2017 Organised by Emmanuel Ullmo