We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms

00:00

Formale Metadaten

Titel
Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms
Serientitel
Anzahl der Teile
31
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Electromagnetically induced transparency (EIT) and Autler–Townes splitting (ATS) are two similar yet distinct phenomena that modify the transmission of a weak probe field through an absorption medium in the presence of a coupling field, featured in a variety of three-level atomic systems. In many applications it is important to distinguish EIT from ATS splitting. We present EIT and ATS spectra in a three-level cascade system, involving cold cesium atoms in the Rydberg state. The EIT linewidth, γ EIT, defined as the full width at half maximum of the transparency window, and the ATS splitting, γ ATS, defined as the peak-to-peak distance between AT absorption peaks, are used to delineate the EIT and ATS regimes and to characterize the transition between the regimes. In the cold-atom medium, in the weak-coupler (EIT) regime γ EIT ≈ A + B( + , where Ω c and Ω p are the coupler and probe Rabi frequencies, Γ eg is the spontaneous decay rate of the intermediate 6P3/2 level, and parameters A and B that depend on the laser linewidth. We explore the transition into the strong-coupler (ATS) regime, which is characterized by the relation γ ATS ≈ Ω c . The experiments are in agreement with numerical solutions of the Master equation. Our analysis accounts for non-ideal conditions that exist in typical realizations of Rydberg-EIT, including laser-frequency jitter, Doppler mismatch of the utilized two-color Rydberg EIT system, and strong probe fields. The obtained criteria to distinguish cold-atom EIT from ATS are readily accessible and applicable in practical implementations.
GleitlagerVideotechnikNiederspannungsnetzTheodolitComputeranimation
Angeregter ZustandPorzellanOptisches InstrumentCäsiumatomTheodolitFeldquantDruckgradientElektrolokomotive Baureihe 181Computeranimation
Brillouin-ZoneAbstandsmessungInterferenzerscheinungPick-Up <Kraftfahrzeug>KlangeffektAbsorptionSondeLinearmotorAbtriebswelleStark-EffektInterferenzerscheinungAktives MediumSchlauchkupplungFeldquantComputeranimation
DiffusionEisenbahnbetriebKernstrahlungAngeregter ZustandBreitbandübertragungGammaquantSondeNetzwerkanalyseCäsiumatomDichtematrixModellbauerSchlauchkupplungGauß-BündelComputeranimation
H-alpha-LinieRauschzahlAstronomisches FensterRastersondenmikroskopieGammaquantOptisches SpektrumSchmalspurlokomotiveMessungModellbauerPresspassungDiagrammTechnische Zeichnung
SondeAngeregter ZustandKurzschlussTiefdruckgebietSchlauchkupplungWolkengattungGleisketteSource <Elektronik>FernordnungGasdichteLaserMessungAdd-Drop-Multiplexer
MessungVideotechnikNiederfrequenzSchlauchkupplungFeldquantPresspassungUmlaufbahnParallelschaltungGammaquantMessungOptisches InstrumentFeldquantFormationsflugKit-CarDiagramm
SchlauchkupplungPumpen <Laser>Cocktailparty-EffektOptisches InstrumentFeldquant
Transkript: Englisch(automatisch erzeugt)
Hello everyone, I am Liqin Ho from Sanxi University in Taiwan, China. In this paper, we experimentally and strategically investigate EIT and ATS, your code system at the sample. Our main result is that we obtain criteria for distinguishing EIT and ATS.
Your latest three-level system, your use-box states. EIT and ATS are two similar utilities used with phenomena. EIT is a quantum interference effect where ATS is a linear easy stacking factor. This leads to an interesting in the establishment of criteria to distance zone.
Now I will show you how we create the criteria to distance EIT and ATS. In our three-level model, we consider a system called the case-three-level system, compressed over a grain state, an excited state and a use-box state. The Hamiltonian of the system is written as equation 1.
In the density matrix in equation 2, we will learn the broad operator gamma that accounts for decay and diffusion. We numerically solve the density matrix from the solution with the opposite of the solution coefficient alpha, for a range of values of omega c and omega p.
This figure shows the calculated alpha as the fraction of omega c and delta p. We define the parameters gamma EIT and gamma ATS to simulate the EIT and ATS regions. We found that the spectrum clearly indicates the two different regions.
Now omega c can respond to the EIT region where there is a very narrow transparency window. In the EIT region, gamma EIT follows this scanning. As omega c increases, the overall length increases and the system enters the ATS region,
in which gamma ATS is equal to omega c. The experiments are performed in a standard magneto-optical track with a temperature of about 100 microcarats and atomic density of about 10-10 cm3. The coupling and probe leads to the counter-propagating source called the atom cloud.
In order to avoid the Riedelberg extension blockage and interaction effects, we choose a low Riedelberg state for a simple quantum number, low probe power, and short probe passes. These plots show several measured EIT and ATS spectra.
We change the coupling Rabi frequency and perform a series of measurements to obtain gamma EIT and gamma ATS as a fraction of the coupling Rabi frequency. In the EIT domain, we use this equation to fit the experimental data. The fit parameters are introduced to a cause for inhomogeneous logarithmic,
which is caused by the layer frequency change chart. The fit is solved by the black dashed line. It is consistent with a 1.5-megapascal orbit at half maximum laser, which is what we believe we have seen lately. In the EIT region, omega c greater than or equal to gamma e g,
and for omega p much less than omega c, it is gamma ATS equal to omega c. In conclusion, the criteria required here are valuable in the availability of atomic fixed, quantum optics, and quantum information applications.
In this final slide, I show you the experimental setup. This picture is our multi-train box, and the result picture shows the pump and coupling setup. Thanks for your attention.