We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms

Formale Metadaten

Titel
Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms
Serientitel
Anzahl der Teile
31
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Electromagnetically induced transparency (EIT) and Autler–Townes splitting (ATS) are two similar yet distinct phenomena that modify the transmission of a weak probe field through an absorption medium in the presence of a coupling field, featured in a variety of three-level atomic systems. In many applications it is important to distinguish EIT from ATS splitting. We present EIT and ATS spectra in a three-level cascade system, involving cold cesium atoms in the Rydberg state. The EIT linewidth, γ EIT, defined as the full width at half maximum of the transparency window, and the ATS splitting, γ ATS, defined as the peak-to-peak distance between AT absorption peaks, are used to delineate the EIT and ATS regimes and to characterize the transition between the regimes. In the cold-atom medium, in the weak-coupler (EIT) regime γ EIT ≈ A + B( + , where Ω c and Ω p are the coupler and probe Rabi frequencies, Γ eg is the spontaneous decay rate of the intermediate 6P3/2 level, and parameters A and B that depend on the laser linewidth. We explore the transition into the strong-coupler (ATS) regime, which is characterized by the relation γ ATS ≈ Ω c . The experiments are in agreement with numerical solutions of the Master equation. Our analysis accounts for non-ideal conditions that exist in typical realizations of Rydberg-EIT, including laser-frequency jitter, Doppler mismatch of the utilized two-color Rydberg EIT system, and strong probe fields. The obtained criteria to distinguish cold-atom EIT from ATS are readily accessible and applicable in practical implementations.