Bestand wählen
Merken

Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors

Zitierlink des Filmsegments
Embed Code

Automatisierte Medienanalyse

Beta
Erkannte Entitäten
Sprachtranskript
the uncertainties that invariably existing characterizing the properties of composite materials have their origin in their micro and nano of structural scale the phenomenal processes responsible for the
uncertainties which range from the micro scale to the macro scale are involved in required the development of
complex models for the
characterization of the sample scanning electron microscopy and EDS analysis were undertaken
from the studies can be observed in inhomogeneous
morphology with randomly distributed needle like particles
due to the nature of the study it was required to obtain the optical absorption spectrum as well as
electrochemical impedance spectrum of the film the optical transmittance of the sample was monitored during the photo
electrical studies in order to exploring the potential non-linear optical absorption phenomenon
moreover a
vectorial two-wave mixing experiment was implemented to analyze the 3rd order optical
nonlinearities in the structures we
identified that electrical signals presented a dependence on electrical frequency and then the study was performed by using an electronic modulation that followed a chaotic behavior to facilitate the processes for the measurement of nonlinear optical effects we used the advantages of high sensitivity related to initial
conditions inherent in chaotic systems for the simulation of a
chaotic attractor the Lorenzo equations related to a choice circuit were used initially the chaotic attractor can be observed in a stable state however when increasing the power of the laser beam clearly increase response can be observed for the behavior of the chaotic in this work
is highlighted the potential of a chaotic signal modulation for evaluating
photo electrical properties exhibited by structures
Gleitlager
Videotechnik
Niederspannungsnetz
Gleitlager
Videotechnik
Nanotechnologie
Maßstab <Messtechnik>
Wirtsgitter
Kristallgitter
TEM-Welle
Elektronenmikroskopie
Modellbauer
Elektronenbeugung
Nadel
Teilchen
Laser
Rückspiegel
Tonfrequenz
Funksender
Strahlteiler
Phototechnik
Absorption
Absorption
Wellenlänge
Optisches Spektrum
Stoffvereinigen
Elektrisches Signal
Optik
Wellenwiderstand <Elektrotechnik>
Elektrooptischer Kerr-Effekt
Funksender
Nichtlineare Optik
Absorption
Elektrizität
Bestrahlungsstärke
Spannungsabhängigkeit
Anstellwinkel
Schubvektorsteuerung
Optik
Kristallgitter
Stoffvereinigen
Modulation
Messung
Elektrisches Signal
Tonfrequenz
Nichtlineare Optik
Prozessleittechnik
Tonfrequenz
Elektrizität
Amplitude
Elektrisches Signal
Klangeffekt
Elektrolytische Leitfähigkeit
Angeregtes Atom
Elektrisches Signal
Modulation
Kaltumformen
Schwingkreis
Spannungsabhängigkeit
Laserverstärker
Elektrisches Signal
Leistungssteuerung
Reihenschwingkreis
Phototechnik
Elektrizität
Kristallgitter
Elektrisches Signal
Ton <Akustik>

Metadaten

Formale Metadaten

Titel Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors
Serientitel New Journal of Physics, Volume 20, 2018
Autor Hernández-Acosta, M. A.
Trejo-Valdez, M.
Castro-Chacón, J. H.
Torres-San Miguel, C. R.
Martínez-Gutiérrez, H.
Torres-Torres, Carlos
Lizenz CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
DOI 10.5446/38885
Herausgeber Institute of Physics (IOP), Deutsche Physikalische Gesellschaft (DPG)
Erscheinungsjahr 2018
Sprache Englisch

Inhaltliche Metadaten

Fachgebiet Physik
Abstract Photoconductive and third-order nonlinear optical properties exhibited by Cu2ZnSnS4 nanostructures are presented. The samples were synthetized in thin film form by a spray pyrolysis processing route. Distinctions in the photoconductive behavior throughout the samples were clearly noted by modulating their optoelectronic response dependent on electrical frequency. Vectorial two-wave mixing experiments were carried out at a 532 nm wavelength provided by a Nd:YAG laser system to study the optical nonlinearities in the samples. An induced transparency effect was observed during nanosecond single-beam experiments in the nanostructures reported. Quantum and thermal processes were considered to be the main physical mechanism responsible for the photo-electrical phenomena and nonlinear refraction in the nanostructures. Potential applications for developing nanophotonic and nanoelectronic instrumentation systems can be contemplated.

Zugehöriges Material

Ähnliche Filme

Loading...
Feedback