We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The combinatorics and real lifting of tropical bitangents to plane quartics

Formale Metadaten

Titel
The combinatorics and real lifting of tropical bitangents to plane quartics
Serientitel
Anzahl der Teile
8
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
A plane quartic has 28 bitangents. A tropical plane quartic may have infinitely many bitangents, but there is a natural equivalence relation for which we obtain precisely 7 bitangent classes. If a tropical quartic is Trop(V(q)) for a polynomial q in K[x,y] (where K is the field of complex Puiseux series), it is a natural question where in the 7 bitangent classes the tropicalizations of the 28 bitangents of V(q) are, or, put differently, which member of the tropical bitangent classes lifts to a bitangent of V(q), and with what multiplicity. It is not surprising that each bitangent class has 4 lifts. If q is defined over the reals, V(q) can have 4, 8, 16 or 28 real bitangents. We show that each tropical bitangent class has either 0 or 4 real lifts - that is, either all complex solutions are real, or none. We also discuss further questions concerning tropical tangents, their combinatorics and their real lifts. This talk is based on joint work with Yoav Len, and with Maria Angelica Cueto.