We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Göttsche conjecture for tropical refined invariants.

Formal Metadata

Title
Göttsche conjecture for tropical refined invariants.
Title of Series
Number of Parts
8
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk I will introduce the classical and tropical invariants corresponding to the enumeration of fixed genus (or cogenus) curves on a Surface, the floor diagrams, and their multiplicity in order to explicit some combinatorial aspects that allow us to establish the polynomiality property on the degree. I will explain how these polynomials can be seen as polynomials in two variables, the degree and the number of complex conjugated points of the configuration of points; and I will show some properties of the polynomials we obtain and some relations among them coming from known properties of the classical invariants. This is a joint work with E. Brugallé.