We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Metadata Uncertainty Principle: Extracting Schrödinger’s Cat with AI

Formale Metadaten

Titel
The Metadata Uncertainty Principle: Extracting Schrödinger’s Cat with AI
Serientitel
Anzahl der Teile
1
Autor
Lizenz
CC-Namensnennung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Over the past several years, the IAEA’s International Nuclear Information System (INIS) has increasingly relied on artificial intelligence to extract, summarize, and index scientific literature. AI now supports the harvesting of bibliographic metadata from source documents, as well as quality assurance and subject indexing, improving efficiency, speed, and consistency. Recently, INIS was provided with 115 historical works of the Austrian Physicist Erwin Schrödinger, for inclusion in its repository. This offered an opportunity to test the limits of AI metadata extraction. Using a state-of-the-art model, a very large, restrictive prompt, and human-in-the-loop review, the approach sought to eliminate uncertainty. However, the experiment revealed a paradox. Instead of eliminating uncertainty, the process exposed its structural persistence. This presentation proposes a “Metadata Uncertainty Principle” to help understand the limits of AI extracted metadata and for designing systems to govern it.