We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Principal component analysis for the approximation of high-dimensional functions in tree-based tensor formats

Formal Metadata

Title
Principal component analysis for the approximation of high-dimensional functions in tree-based tensor formats
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We present an algorithm for the approximation of high-dimensional functions using tree-based low-rank approximation formats (tree tensor networks). A multivariate function is here considered as an element of a Hilbert tensor space of functions defined on a product set equipped with a probability measure. The algorithm only requires evaluations of functions on a structured set of points which is constructed adaptively. The algorithm is a variant of higher-order singular value decomposition which constructs a hierarchy of subspaces associated with the different nodes of a dimension partition tree and a corresponding hierarchy of interpolation operators. Optimal subspaces are estimated using empirical principal component analysis of interpolations of partial random evaluations of the function. The algorithm is able to provide an approximation in any tree-based format with either a prescribed rank or a prescribed relative error, with a number of evaluations of the order of the storage complexity of the approximation format. Reference : A. Nouy. Higher-order principal component analysis for the approximation of tensors in tree-based low rank formats. arxiv preprint, 2017.