We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Uncertainty quantification for multiscale kinetic equations with uncertain coefficients

00:00

Formal Metadata

Title
Uncertainty quantification for multiscale kinetic equations with uncertain coefficients
Title of Series
Number of Parts
17
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk we will study the generalized polynomial chaos-stochastic Galerkin (gPC-SG) approach to kinetic equations with uncertain coefficients/inputs, and multiple time or space scales, and show that they can be made asymptotic-preserving, in the sense that the gPC-SG scheme preserves various asymptotic limits in the discrete space. This allows the implementation of the gPC methods for these problems without numerically resolving (spatially, temporally or by gPC modes) the small scales. Rigorous analysis, based on hypocoercivity of the collision operator, will be provided for both linear transport and nonlinear Vlasov-Poisson-Fokker-Planck system to study the regularity and long-time behavior (sensitivity analysis) of the solution in the random space, and to prove that these schemes are stochastically asymptotic preserving.